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Resumo

Esta tese se propõe a estudar a cointegração fracionária no domínio da frequên-

cia. Aqui investigam-se as restrições que a ausência ou não de cointegração

impõe sobre o determinante da matriz de densidade espectral de um vetor de

séries bivariado, integrado de ordem 1, quando avaliado na primeira diferença.

Permite-se, aqui, que os erros da relação de cointegração sejam fracionalmente

integrados. Neste estudo é mostrado que o determinante da matriz de densi-

dade espectral é uma função potência do parâmetro que mensura a redução na

ordem de integração do erro (denotado por b) para um conjunto de frequências

de Fourier próximas da origem. A partir disto, duas propostas para a estimação

do parâmetro de cointegração b são sugeridas. Testes sob a hipótese nula de não

cointegração são derivados a partir dos estimadores apresentados e suas propri-

edades assintóticas discutidas. Estudos com amostras �nitas foram realizados

com o objetivo de avaliar o desempenho empírico dos estimadores e dos testes

propostos através do calculo do vício, do erro quadrático médio, dos níveis de

signi�cância e do poder. Os resultados sugerem que os testes possuem níveis de

signi�cância empíricos próximos aos níveis nominais. Além disto, o poder dos

testes apresenta um desempenho similar quando comparado com o desempenho

de outros testes clássicos na literatura de cointegração.

Palavras-chave: Cointegração Fracionária, Domínio da Frequência, Estimador

Semiparamétrico, Determinante da Matriz de Densidade Espectral.



Abstract

This thesis proposes to study the fractional cointegration in the frequency do-

main. Here is investigated the restrictions that the absence or the presence of

cointegration imposes on the determinant of the spectral density matrix of a

vector of bivariate series, integrated of order 1, when evaluated at the �rst di�er-

ence. The errors of the cointegration relationship are allowed to be fractionally

integrated. In this study it is shown that the determinant of the spectral den-

sity matrix is a power function of the parameter that measures reduction of the

order of integration of the error series (denoted here by b) for a set of Fourier

frequencies close to the origin. From this, two proposals for the estimation of the

cointegrating parameter b are suggested. Tests under the null hypothesis of non-

cointegration are derived from these estimators and their asymptotic properties

are discussed. A �nite sample investigation was conducted in order to evaluate

the empirical performance of the estimators and tests by calculating the bias, the

mean square error, the signi�cance levels and the power. The results suggest that

tests have empirical signi�cance levels close to nominal levels. Furthermore, the

power of the tests shows a similar performance compared with the performance

of other classical tests in cointegration literature.

Keywords: Fractional cointegration; Determinant of spectral density matrix,

Semiparametric estimator.
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Capítulo 1

Introdução

O objetivo deste trabalho é estudar cointegração fracionária sob diferentes con-

textos e propor métodos de estimação dos parâmetros de interesse e testes de

não coitegração baseados no domínio da frequência. O conceito de cointegração,

introduzido por Granger (1981), tornou-se uma das técnicas mais populares en-

tre os econometristas uma vez que permite veri�car se uma combinação linear de

séries não estacionárias, integradas de mesma ordem, produz erros cuja ordem

de integração é reduzida.

Neste estudo, investigam-se as restrições que a ausência ou não de cointegra-

ção impõe sobre o determinante da matriz de densidade espectral de um vetor de

séries. Para a pesquisa proposta são considerados vetores bivariados e integrados

de ordem 1 e avaliados na primeira diferença com os erros da relação de cointe-

gração fracionalmente integrados. O ponto fundamental sob o qual este trabalho

se baseia é o fato de que o determinante da matriz de densidade espectral é uma

função potência do parâmetro que reduz a ordem de integração do erro, denotado

por b, para um conjunto de frequências de Fourier próximas da origem.
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Nesse contexto, no Capítulo 2 é apresentado o artigo Tests for non-cointegration

based on the frequency domain que é a parte central desta pesquisa. Com base

na teoria do domínio da frequência, as propriedades matemáticas e estatísticas

dos processos cointegrados são discutidas. Em adição, duas propostas para a

estimação do parâmetro de cointegração b são sugeridas: a primeira, baseada em

Geweke and Porter-Hudak (1983), propõe uma regressão do logaritmo do deter-

minante da matriz espectral do processo bivariado em estudo. Como segunda

proposta, sugere-se um estimador semi-paramétrico do determinante médio ba-

seado na proposta de Robinson (1994).

O artigo também propõe testes sob a hipótese nula de não cointegração, o

quais são derivados à partir dos estimadores sugeridos e as propriedades assintó-

ticas desses testes são derivadas. Estudos com amostras �nitas foram realizados

com o objetivo de avaliar, empiricamente, o desempenho dos estimadores e dos

testes propostos por meio do calculo do vício ,do erro quadrático médio, dos ní-

veis de signi�cância e do poder. Os resultados do poder dos testes evidenciaram

um desempenho similar comparado com outros testes clássicos na literatura de

cointegração discutidos em Dittmann (2000).

A avaliação empírica extende-se por meio de comparação com a metodologia

apresentada em Velasco (2003). Esse autor sugere um método alternativo para

estimação do parâmetro b. Vale ressaltar que Velasco (2003) apresenta, dife-

rentemente do estudo proposto, as propriedades assintóticas do estimador sob a

hipótese de cointegração. Muito embora o estimador sugerido em Velasco (2003)

permita que a ordem de integração do vetor seja superior a 1, os resultados das

simulações mostram que o método de Velasco (2003) não é robusto a diferentes

parametrizações do vetor cointegração, denotado aqui por β, ao passo que as

2



propostas sugeridas nesta tese mostraram-se robustas à variações em β.

Com o objetivo de ilustrar a aplicação dos testes propostos, o artigo apresenta

análise de séries reais. Nesse contexto, a hipótese de não cointegração é testada

entre as séries do índice Dow Jones da bolsa de valores de Nova Iorque e o índice

Financial Times Stock Exchange 100 da bolsa de Londres. Para tal interesse,

foram coletadas observações mensais compreendidas entre janeiro de 1985 e maio

de 2014.

O terceiro capítulo sugere a utilização de periodogramas robustos nos teste

quando as séries possuem outliers. O comportamento dos testes robustos é veri-

�cado por meio de ensaios empíricos. Por �m, o Capítulo 4 conclui o trabalho

com as sugestões de pesquisas futuras.
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Capítulo 2

Tests for non-cointegration based

on the frequency domain

Igor Viveiros Melo Souzaa, Valderio Anselmo Reisenb, Glaura da

Conceição Francoc

aDECEG, UFOP and Departamento de Estatística, UFMG

bDepartamento de Estatística, UFES and PPGEA, UFES

cDepartamento de Estatística, UFMG

Abstract The aim of this paper is to propose methods to test the null hy-

pothesis of non-cointegration in bivariate series based on the determinant of the

spectral density matrix for the frequencies close to the origin. Two di�erent sta-

tistics are proposed: the �rst one is based on a regression of logged determinant

on a set of logged Fourier frequencies and the second statistic is the semipara-

metric averaged determinant estimator. In the study, series are assumed to be

I(1) and the order of integration of the error series is I(1− b), b ∈ [0, 1], that is,

the parameter b determines the reduction in the order of integration of the error

4



series. Besides, the determinant of the spectral density matrix for the �rst di�e-

rence series is a power function of b. An advantage of the methods proposed here

over the standard methods is that they allow to know the order of integration of

the error series without estimating a regression equation. Methods discussed here

possess correct size and good power for moderate sample sizes when compared

with other proposals.

Keywords: Fractional cointegration; Determinant of spectral density matrix,

Semiparametric estimator

2.1 Introduction

To study the relationship among economic variables, the concept of cointegra-

tion, introduced by Granger (1981), has been widely employed, mainly due to the

spurious regression problem. The basic idea of cointegration consists in the fact

that a h×1 vector series Xt, t = 1, 2, ..., where each component is non-stationary,

can produce some linear combination of its coordinates that has a lower order

of integration. After the seminal work of Granger (1981), several studies about

this topic have been developed. In the classic context, the most used tests for

cointegration are the Engle and Granger (1987) test (EG), the Phillips and Ou-

liaris (1988) test and the Johansen (1991) procedure. Besides, tests to verify the

presence of a unit root are necessary to use appropriate procedures for modeling

the data.

Despite its widespread use, the classical set up of cointegration is lately being

considered quite restrictive for many real problems. As an alternative, fractio-

nal cointegration has emerged as a more adequate methodology and examples
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to real problems can be seen in Cheung and Lai (1993), Baillie and Bollerslev

(1994), Dittmann (2001), McHale and Peel (2010) and Cuestas et al. (2014).

Di�erent approaches have been implemented in the estimation and construction

of hypothesis tests concerning fractional processes. See, for example, Robinson

(1994), Robinson and Marinucci (2001), Marinucci and Robinson (2001), Robin-

son and Yajima (2002) and Velasco (2003).

The �rst step in cointegration analysis is to verify the order of integration of

series Xi,t, t = 1, 2, ...,, i = 1, ..., h, that composes the vector Xt. A series Xi,t is

said integrated of order d, d ∈ <, denoted by Xi,t ∼ I(d), if d is the minimum

number of di�erences required to obtain a process that admits an Autoregressive

Moving Average representation (ARMA). In this context, parameter d measures

the memory of the series. Using the ARMA representation, series Xi,t can be

written as:

Xi,t = (1−B)−dei,t (2.1.1)

where ei,t = θq(B)φ−1
p (B)ui,t with ui,t being a white noise process with zero mean

and constant variance σ2
u, θq(B) and φp(B) are polynomials in B with order q

and p, respectively, with all roots outside of the unit circle (see Hosking (1981)).

B is the backshift operator, that is, BτXi,t = Xi,t−τ ∀ τ ∈ N. In this case, the

series Xi,t is said to be an Autoregressive Fractionally Integrated Moving Average

process, denoted by ARFIMA (p, d, q). Di�erent values of d attach di�erent

properties to the series Xi,t. A process with d ≤ −0.5 is stationary but not

invertible. When d ∈ (−0.5, 0.5), Xi,t is both stationary and invertible. When

d ≥ 0.5 the process is non-stationary although for d ∈ [0.5, 1) it is mean-reverting

6



in the sense that innovations do not have long-run impact on the values of the

process. For values of d ≥ 1, the mean-reversion property is no longer valid (for

details see Cheung and Lai (1993)).

If Xi,t is a stationary process, it has a spectral density function1, fX(λ), which

can be written as:

fX(λ) = fe(λ)
∣∣1− e−iλ∣∣−2d

(2.1.2)

where fe(λ) is the spectral density of a stationary ARMA process et with λ ∈

[0, 2π) and d ∈ <. When the series Xi,t is non-stationary, i.e., d ≥ 0.5, the

function de�ned in Equation 2.1.2 is usually denoted pseudo-spectral density

(see, for example, Velasco (2003)).

A general de�nition of fractional cointegration was given by Robinson and

Marinucci (1998), allowing a di�erent order of integration for Xi,t, that is, Xi,t ∼

I(di), di > 0, ∀ i. Therefore, the fractional cointegration for a h× 1 vector Xt is

de�ned as follows:

De�nition 1. Let Xt, t = 1, 2, ..., be a h × 1 vector series whose i-th element

Xi,t ∼ I(di), di > 0, i = 1, ..., h. Xt is called fractionally cointegrated, denoted

by Xt ∼ FCI(d1, ..., dh, dε), if there exists a h × 1 vector β 6= 0 such that εt =

βTXt ∼ I(dε), where 0 < dε < min1≤i≤h di.

The above de�nition is valid if and only if di = dj for some i 6= j, i, j = 1, ..., h.

The vector β is called cointegration vector. In the case that d1 = ... = dh = d, it

is usual to write Xt ∼ CI(d, b) where b = d − dε. When b = 0 the vector Xt is

non-cointegrated. In this sense, parameter b measures the reduction in the order

1The spectral density of an stationary process Xt is the Fourier transform of the autocova-

riance function, γX(τ) = E {(Xt+τ − µX) (Xt − µX)}, that is, fX(λ) = 1
2π

∞∑
τ=−∞

γX(τ)eiτλ.

7



of integration of the error series εt.

To test the null hypothesis of fractional non-cointegration, a general approach

is to calculate the order of integration of the residual series ε̂t = β̂
T
Xt, after

estimating vector β (see Dittmann (2000)).

Various estimators of dε can be used in hypothesis tests for fractionally cointe-

grated processes (see, for example, Dittmann (2000) and Santander et al. (2003)).

Another approach can be found in Velasco (2003) who proposed a method to es-

timate and test the parameter b under the null hypothesis of cointegration.

Thus, the main objectives of this work are to propose new methods for es-

timating the parameter b and, also, a test of non-cointegration based on the

determinant of the spectral density matrix of the vector (∆X1,t,∆X2,t), where

∆ is the �rst di�erence operator, that is, ∆ = (1 − B). Here, special attention

is paid to the case where d = 1, although the procedures can also be adapted

to other cases such as d 6= 1. In this situation an appropriate estimator of d is

required.

Some theoretical results are established for the proposed methods and an

empirical Monte Carlo study is conduct to evaluate their performance for small

sample sizes. In addition, the classical cointegration methods are also considered

in empirical studies for comparison purposes.

The paper is structured as follows. In Section 2 some properties of the de-

terminant of the spectral density matrix for cointegrated and non-cointegrated

series in the �rst di�erence are analysed. Section 3 presents the log determinant

regression estimator. In addition, the averaged determinant estimator and its

modi�cation are discussed. A Monte Carlo study to analyse the performance of

proposals suggested here in terms of bias, size and power is presented in Section
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4. This section also compares methods proposed here with residual based tests

presented in Dittmann (2000) and to the Log Coherency Regression method in

Velasco (2003). Section 5 shows an application of the proposed methodologies to

a real time series and Section 6 concludes the work.

2.2 The determinant of the spectral density ma-

trix for a bivariate series

This section presents the properties of the determinant of the spectral density

matrix for the vector (∆X1,t,∆X2,t) where both components are I(1) and satis�es

the linear relationship X1,t = βX2,t + εt for some β 6= 0. The error term εt is

assumed to be I(1− b), with 0 ≤ b ≤ 1, that is, the order of integration can take

noninteger values.

If (X1,t, X2,t) is cointegrated, i.e., b ∈ (0, 1], than the determinant of the spec-

tral density matrix of (∆X1,t,∆X2,t) is a power function of b. Let the observable

bivariate time series (X1,t, X2,t) be formed by the following system:

X1,t = β1Tt + w1,t

X2,t = β2Tt + w2,t

(2.2.1)

for t = 1, 2, ..., β1 6= 0 and β2 6= 0. The series Tt is a common unobservable

stochastic trend such that:

Tt = (1−B)−1ηt (2.2.2)

and the innovations ηt are a stationary ARMA process with zero mean such that

9



∞∑
τ=−∞

|γη(τ)| < ∞ where γη(τ) is the autocovariance of order τ . The pair of

innovations (w1,t, w2,t) follows the processes:

w1,t = (1−B)−(1−b1) e1,t

w2,t = (1−B)−(1−b2) e2,t

(2.2.3)

where b1 ∈ [0, 1] and b2 ∈ [0, 1]. The vector (e1,t, e2,t) follows a zero mean ARMA

process with covariance matrix2 Σ =


∞∑

τ=−∞
γe1(τ) 0

0
∞∑

τ=−∞
γe2(τ)

, such that

∞∑
τ=−∞

|γe1(τ)| <∞,
∞∑

τ=−∞
|γe2(τ)| <∞ and it is uncorrelated with ηt. The system

described in Equation 2.2.1 can be rewritten as follows:

X1,t = βX2,t + εt (2.2.4)

where β = β1/β2, β1 6= 0, β2 6= 0 and εt = w1,t − (β1/β2)w2,t is a non-observable

error term such that εt ∼ I(1− b) with b = min (b1, b2).

Following De�nition 1, the vector (X1,t, X2,t) will be non-cointegrated if and

only if b = 0. Note that in Equation 2.2.4, the input series X2,t and error term εt

are correlated. To impose orthogonality between X2,t and εt it is necessary that

σ2
u2 = 0 which implies that X2,t = Tt. The spectral density matrix of the vector

2Without loss of generality, Σ is assumed to be diagonal in order to avoid the cross spectrum
terms between e1,t and e2,t and to make the calculations easier
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(∆X1,t,∆X2,t) can be written as (see Priestley (1981) p.658-659):

F(λ) =
∞∑

τ=−∞

1
2π

E {∆X1,t+τ∆X1,t} E {∆X1,t+τ∆X2,t}

E {∆X2,t+τ∆X1,t} E {∆X2,t+τ∆X2,t}

 e−iλτ
=

 f∆X1(λ) f∆X1∆X2(λ)

f∆X2∆X1(λ) f∆X2(λ)

 ,
(2.2.5)

where f∆X1(λ) and f∆X2(λ) are the spectral densities of ∆X1,t and ∆X2,t, res-

pectively and f∆X1∆X2(λ) and f∆X2∆X1(λ) are the cross-spectrum between ∆X1,t

and ∆X2,t. The matrix F(λ) is Hermitian which means that f∆X1∆X2(λ) =

f∆X2∆X1(λ), where the over line means the complex conjugate.

Using the standard spectral properties of multivariate time series, F(λ) can

be rewritten as (see Priestley (1981)):

F(λ) =

β2
1fη(λ) + |1− e−iλ|2b1fe1(λ) β1β2fη(λ)

β2β1fη(λ) β2
2fη(λ) + |1− e−iλ|2b2fe2(λ)

 . (2.2.6)

The determinant of matrix F(λ) is:

D(λ) = |1− e−iλ|2b1β2
2fe1(λ)fη(λ) + |1− e−iλ|2b2β2

1fe2(λ)fη(λ)+

|1− e−iλ|2(b1+b2)
fe1(λ)fe2(λ). (2.2.7)

Assuming without loss of generality that b1 ≤ b2, which makes b = b1, and

using the fact that,

|1− e−iλ|2b
∗

= (2− 2 cosλ)b
∗
,
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and:

lim
λ→0+

(2− 2 cosλ)b
∗

λ2b∗
= 1,

which means that for b∗ ∈ <, |1− e−iλ|2b
∗

= O(λ2b∗), the determinant D(λ) can

be rewritten as:

D(λ) = |1− e−iλ|2bG(λ)

G(0)
G(0) +O(λ2b2) +O(λ2(b+b2)), (2.2.8)

where G(λ) is a bounded function due to the stationarity of the processes e1,t,

e2,t and ηt such that:

lim
λ→0+

G(λ)

G(0)
= 1.

From this, the determinant D(λ) can be computed as:

D(λ) ∼ |1− e−iλ|2bG(λ)

G(0)
G(0) as λ −→ 0+, (2.2.9)

where the symbol ” ∼ ” means that ratio of left and right-hand sides tends to a

constant 0 < C <∞ as λ→ 0+. From the Equation 2.2.9, D(λ) depends on the

reduction of the order of integration b imposed by cointegration. Similar results

are also described by Nielsen (2004). Therefore, if (X1,t, X2,t) is cointegrated,

that is, 0 < b ≤ 1, D(λ) → 0 as λ −→ 0+. It means that F(λ) is a matrix with

incomplete rank at λ = 0 (see Phillips and Ouliaris (1988)). In the case of b = 0,

that is, (X1,t, X2,t) is non-cointegrated, D(λ)→ C as λ −→ 0+ and F(λ) has full

rank at λ = 0.

Therefore, new methods to estimate parameter b and test the null hypothesis

of non-cointegration are proposed by analysing the slope of the function D(λ) in

12



a neighborhood of zero frequency.

2.3 Estimating b

Standard estimation methods for the memory parameter d, well discussed in

the literature of long memory processes, can be used as alternative procedures

to obtain estimates of b. These procedures are addressed here using the fact

that D(λ) ∼ O(λ2b). The �rst proposal is similar to the approach of Geweke

and Porter-Hudak (1983), where the logged periodogram is regressed on logged

Fourier frequencies. The second one is based on Robinson (1994) semiparametric

averaged periodogram estimator of d, where a logged ratio of the periodogram is

evaluated in a neighborhood of zero frequency.

2.3.1 The logged determinant regression

Similar to the estimator of d proposed by Geweke and Porter-Hudak (1983)

(GPH), an estimate of b can be computed from an approximated regression equa-

tion of lnD(λ) ∼ 2 ln |1− e−iλ| when λ −→ 0+. By taking the log in the Equation

2.2.9 yields:

lnD(λ) ∼ lnG(0) + ln
G(λ)

G(0)
+ b ln |1− e−iλ|2 as λ −→ 0+. (2.3.1)

For a pair of series (∆X1,t,∆X2,t) with a sample of size n, ie, t = 1, ..., n ,

the �rst step in order to implement the above regression model is to estimate the

spectral density matrix, F(λ), in 2.2.6. Let λj = 2πj/n, j = l, l + (2r + 1), l +

13



2(2r+ 1), ...,m− (2r+ 1),m, where r, l ∈ N∗, with r < l < m and m < n. Hence,

the estimate of F(λj) is given by

F̂r(λj) =
1

(2r + 1)


j+r∑
v=j−r

In,∆X1(λv)
j+r∑
v=j−r

In,∆X1∆X2(λv)

j+r∑
v=j−r

In,∆X2∆X1(λv)
j+r∑
v=j−r

In,∆X2(λv)

 , (2.3.2)

where each diagonal term of F̂r(λj) is the average of 2r+1 distinct periodograms

centered at frequency j given by:

In,∆Xi
(λj) =

1

2πn

∣∣∣∣∣
n∑
t=1

Xi,te
−iλjt

∣∣∣∣∣
2

, (2.3.3)

for i = 1, 2. The o�-diagonal terms of F̂r(λj) are also an average of 2r+1 distinct

cross-periodograms centered at frequency j that can be computed by:

In,∆Xs∆Xp(λj) =

(
n∑
t=1

∆Xs,te
−iλjt

n∑
t=1

∆Xp,te
iλjt

)
/2πn (2.3.4)

where p, s = 1, 2, p 6= s. The natural estimate of D(λj) in Equation 2.3.1 is the

determinant of F̂r(λj) denoted here by D̂r(λj). Equation 9.5.12 from Priestley

(1981), p.697, states that cov
[
In,∆Xs1∆Xp1

(λj), In,∆Xs2∆Xp2
(λk)

]
→ 0 as n → ∞,

where s1, p1, s2, p2 = 1, 2, and λj = 2πj/n, λk = 2πk/n, j, k = 1, ..., n with

j 6= k. Since the quantities in F̂r(λj) are calculated with non-overlapping Fourier

frequencies, they satisfy the conditions presented by Priestley (1981) in order

to be asymptotically uncorrelated and, as a result, cov [D(λj), D(λk)] → 0 as

n → ∞. If the process (∆X1,t,∆X2,t) is Gaussian, then cov [D(λj), D(λk)] = 0

∀n.
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Using the fact that ln
[
D̂r(λj)

D(λj)

]
− ln D̂r(λj) = − lnD(λj) and replacing D(λj)

by the approximation in Equation 2.3.1, the following regression equation is ob-

tained:

ln D̂r(λj) = lnG(0) + ln
G(λj)

G(0)
+ c(r) + b ln |1− e−iλj |2 +

{
ln

[
D̂r(λj)

D(λj)

]
− c(r)

}
(2.3.5)

where c(r) = E
{

ln
[
D̂r(λj)

D(λj)

]}
.

Therefore, the ordinary least squares estimator of b, b̂LDR, is:

b̂LDR =

(
m∑
j=l

Z̃j
2

)−1 m∑
j=l

Z̃j(ln D̂r(λj)), (2.3.6)

where Zj = ln (2− 2 cosλj) and Z̃j = Zj − Z̄, Z̄ is the mean of Zj. In order

to obtain some asymptotic results of b̂LDR, under the null hypothesis of non-

cointegration, the following assumptions are introduced:

Assumption 1. The vector of innovations (∆X1,t,∆X2,t) follows a Gaussian

white noise process with zero mean and covariance matrix Σ.

Assumption 2. Let m = g(n) such that g(n)
n

+ 1
g(n)

+ lnn
g(n)
→ 0 as n→∞.

Remark 1. Under Assumption 1, the spectral density of (∆X1,t,∆X2,t), F(λj),

is constant across di�erent values of λj. In other words, the value of F(λj) is

independent of j, j = 1, ...,m, and, therefore, D(λj) = Λ, where Λ is a positive

constant. Moreover, if Assumption 1 holds, than the system described by Equation

2.2.1 is necessarily non-cointegrated, that is, b = b1 = b2 = 0.

Following Goodman (1963) and under Assumption 1, the distribution of the

quantityD = ln
[
4 (2r + 1)2 D̂r(λj)/Λ)

]
has the same properties of ln(χ2

(4r+2)χ
2
(4r)),
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that is, D
d
= ln(χ2

(4r+2)χ
2
(4r)) where χ

2
(4r+2) and χ

2
(4r) are chi-squared random va-

riables with (4r + 2) and 4r degrees of freedom, respectively. The symbol
d
=

means equality in distribution. In addition, since the vector (∆X1,t, X2,t) is a

white noise, G(λ) in Equation 2.2.8 is constant, that is, G(λ) = G(0).

Proposition 1. Let the bivariate time series (X1,t, X2,t) satisfying the Equation

2.2.4. If Assumptions 1 and 2 hold, then:

1. E
[
b̂LDR

]
= 0;

2. V
[
b̂LDR

]
= ψ(1)(2r+1)+ψ(1)(2r)

m∑
j=l

Z̃j
2

;

3. V
[
b̂LDR

]
→ 0 as m→∞,

where ψ(1)(z) is the Polygamma function of order 1, that is, ψ(1)(z) = d2 ln Γ(z)
dz2

.

Assumption 1 is quite strong but necessary to understand the behavior of the

statistic b̂LDR. As pointed out, under the assumption of non-cointegration and

for a �xed m and r, the distribution of b̂LDR will be the same of a weighted sum

of {Wj}mj=l independent random variables where each Wj
d
= ln(χ2

(4r+2)χ
2
(4r)) and

the weights are Z̃j/

(
m∑
j=l

Z̃j
2

)
. Once m → ∞ the following proposition can be

stated:

Proposition 2. Let Assumptions 1 and 2 hold. Then, for a �xed positive integer

r

V
[
b̂LDR

]−1/2

b̂LDR
d→ N (0, 1)
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as m → ∞, where b̂LDR and V
[
b̂LDR

]
are given by Equations 2.3.6 and .2.7,

respectively.

The proof of Propositions 1 and 2 can be viewed in Appendixes .2 and .3,

respectively. Assumption 1 can be relaxed allowing the terms D(λj) and lnG(λj)

to vary across di�erent frequencies. In that case, the estimator b̂LDR is still

consistent since for su�ciently close frequencies λj, λk, j 6= k, D(λj) ≈ D(λk) as

n→∞ and lnG(λj)→ lnG(0) as m→∞.

2.3.2 The Averaged Determinant

Based on the semiparametric averaged periodogram estimator of d proposed by

Robinson (1994), an alternative to estimate b can be computed due to the fact

that the D(λ) in Equation 2.2.9 is a regularly varying function of index 2b, that

is: 3

lim
λ→0+

D(qλ)

D(λ)
= q2b, (2.3.7)

where q is a positive constant. Based on Equation 2.3.7,

b ∼= (2 ln q)−1 ln
D(qλ)

D(λ)
. (2.3.8)

The estimate of b, say b̂AD, is computed by replacing D(·) by its estimate and

3Following the de�nition given by Bingham et al. (1987), a measurable function H :
[a∗,∞) → (0,∞), ∀a∗ ∈ <, is said to be regularly varying of index ϑ, ϑ ∈ <, if H satis-
�es:

lim
y→∞

H(αy)
H(y)

= αϑ ∀α > 0.

In the present case, let y = 1/λ. Thus, for a positive q:

lim
λ→0+

D(qλ)

D(λ)
= lim
y→∞

H(qy)
H(y)

= q2b
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this is discussed as follows. For a sample of (∆X1,t,∆X2,t), t = 1, ..., n, let now

the estimate of F(λj), j = 1, ...,m, be given by:

F̂ (λj) =

I∆X1∆X1(λj) I∆X1∆X2(λj)

I∆X2∆X1(λj) I∆X2∆X2(λj)

 . (2.3.9)

The estimate of D(λ) and D(qλ) are then obtained as follows:

D̂(λm) =

∥∥∥∥∥
m∑
j=1

F̂ (λj)

∥∥∥∥∥ and D̂(qλm) =

∥∥∥∥∥
m∑
j=1

F̂ (qλj)

∥∥∥∥∥ , (2.3.10)

where ‖A‖ denotes the determinant of the matrix A and m satis�es Assumption

2. Therefore, D̂(qλm)→ D̂(0) and D̂(λm)→ D̂(0). The parameter b is estimated

by:

b̂AD = (2 ln q)−1 ln
D̂(qλm)

D̂(λm)
. (2.3.11)

The statistic in 2.3.11 will be called the Average Determinant (AD) estima-

tor. Under Assumption 1, that is, (∆X1,t,∆X2,t) follows a Gaussian white noise

process, b̂AD can be rewritten as:

b̂AD =
{

ln
[
D̂(qλm)/Λ

]
− ln

[
D̂(λm)/Λ

]}
(2 ln q)−1 . (2.3.12)

Since λj is the Fourier frequency, the set of variables F̂ (λj) are independently

distributed and each is asymptotically distributed as a 2 × 2 complex Whishart

matrix, that is, F̂ (λj) ∼W2
c(1, f(λ)) (See Brillinger (1981) pp. 305).

In the case where q is not a positive integer number, the quantity 2πjq/n is no

longer a Fourier frequency and, in order to guarantee asymptotic independence of
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F̂ (qλj), the frequencies λj should be chosen such that λj and λk, j, k = 1, ...,m,

j 6= k, are spaced su�ciently apart. In particular, |λj ± λk| � 2π/n, which is

equivalent to |j ± k| � 1/q (see Priestley (1981), pp. 405). This condition is

easily achieved, for example, if q ∈ (0.5, 1) and |j ± k| ≥ 2, that is, j and k are

chosen from a set of odd or even numbers.

Note that the asymptotical independence between D̂(qλ) and D̂(λ) is not

always guaranteed since for some set of frequencies (qλj, λk), |qλj ± λk| < 2π/n.

In order to solve this problem the frequencies can be trimmed out, although this

can lead to very poor estimates in practical situations, as the estimates will be

calculated with a reduced number of frequencies.

Under Assumptions 1 and 2, b̂AD is an unbiased estimator of b and consistent.

This can be summarized in the following proposition:

Proposition 3. Let the bivariate time series (X1,t, X2,t) satisfying the Equation

2.2.4. If Assumptions 1 and 2 hold, then:

1. E
[
b̂AD

]
= 0;

2. V
[
b̂AD

]
=
(
ψ(1)(m− 1) + ψ(1)(m)

)
(1− ρ) /

{
2 (ln q)2};

3. V
[
b̂AD

]
→ 0 as m→∞,

where ρ is the correlation coe�cient between D̂(qλ) and D̂(λ) which has no closed

form if no frequencies are trimmed out. The proof of Proposition 3 is in Appendix

.4.

Corollary 1 of Cai et al. (2013) shows that
ln (D̂(λm)/Λ)−3/dm/2e

2/
√
dm/2e

d→ N (0, 1).

Based on this, the above estimator can be written as a sum of two asympto-
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tic correlated Gaussian processes. Then, heuristically, it should converge to a

Gaussian random variable.

As an alternative to AD estimator,one should consider all frequencies in the

denominator of D̂(qλm)

D̂(λm)
which has variance reduction compared with b̂AD. This

alternative method, denoted by Modi�ed Averaged Determinant (MAD), is dis-

cussed now. In this case, the numerator will take into account dm/2e distinct

frequencies while the denominator will take into account [m] distinct frequencies.

Let m1 and m2 be the number of frequencies included in the numerator and de-

nominator, respectively. Using Equation .2.2 in Appendix .2 one can see that,

under the hypothesis of non-cointegration,

E
[
b̂AD

]
= 2(lnm2− lnm1) +ψ(0)(m1) +ψ(0)(m1− 1)−ψ(0)(m2)−ψ(0)(m2− 1),

(2.3.13)

where ψ(0)(z) is the digamma function: ψ(0)(z) = d ln Γ(z)
dz

. Since b̂AD will no longer

be centered at b = 0, a bias correction must be considered. In this sense, the

MAD estimator is de�ned by:

b̂MAD =
ln

D̂(qλm1 )

D̂(λm2 )

2 ln q
− [2(lnm2 − lnm1) + (ψ(0)(m1) + ψ(0)(m1 − 1))

− (ψ(0)(m2) + ψ(0)(m2 − 1))]/(2 ln q). (2.3.14)
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The variance of b̂MAD will be:

V
{
b̂MAD

}
=
{[
ψ(1)(m1 − 1) + ψ(1)(m1)

]
+
[
ψ(1)(m2 − 1) + ψ(1)(m2)

]
−

2ρ
√
ψ∗ (m1,m2)

}
/
{

4 (ln q)2} , (2.3.15)

where ψ∗ (m1,m2) =
[
ψ(1)(m1 − 1) + ψ(1)(m1)

] [
ψ(1)(m2 − 1) + ψ(1)(m2)

]
. Note

that V
{
b̂AD

}
is a particular case of V

{
b̂MAD

}
when m1 = m2.

2.4 Monte Carlo Study

Here, the methods discussed in the previous sections are analyzed and compared

for �nite sample sizes. The performance of the methods is based on the empirical

mean of the bias, standard deviation (sd), Mean Squared Error (MSE), size

and power. In addition, the standard methods for non-cointegration tests are

also considered for comparison purpose. The �nite sample size investigation is

divided in two parts. The �rst presents the empirical performance of the tests

under the null hypothesis of non-cointegration for β = 1.0 in Equation 2.2.4,

and the second part discusses robustness properties of the proposed tests across

di�erent values of β with a comparison to the one given in Velasco (2003).

2.4.1 Empirical results for testing non-cointegration

Let the vector X1,t, X2,t, t = 1, ..., n, generated by the following structure

X1,t = X2,t + εt
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where the vector (X2,t, εt) was generated from

(1−B) 0

0 (1−B)1−b


X2,t

εt

 =

e1,t

e2,t

 ∼ N


0

0


1 0

0 1


 .

The sample sizes considered were n = 100, 500, 1000 and the results are ba-

sed on 3500 replications. In all cases, the 300 �rst observations were discar-

ded to avoid any in�uence of the initial data. The parameter b assumed values

{0, 0.1, 0.2, 0.5, 0.7, 1} and the bandwidthm = n0.7. For testingH0 : b = 0 against

the alternative H1 : b > 0, the nominal size was �xed at 5% and q = {0.6, 0.8}

were considered for b̂AD and b̂MAD, respectively. For the log determinant regres-

sion method, that is, the (̂bLDR) estimator, r was equal to 1, which means that

3 di�erent frequencies were included in the calculation of D̂(λj) (see Equation

2.3.2).

Since the correlation between D̂(λm) and D̂(qλm) does not have a closed

form, 2000 replications of these quantities were computed in order to obtain the

estimates of the variances of b̂AD and b̂MAD. From the empirical results, the

sample correlations are very close for the above sample sizes across the values of

q = 0.6, 0.65, ..., 0.90, 0.95. Some of the results are displayed in Table 2.1. Note

that q was chosen not to belong to ∈ (0.0, 0.5) to avoid loss of information from

the peridogram function, that is, the estimators would have less frequencies in the

calculation of the determinants of these estimators compared with q ∈ (0.5, 1.0).

Tables 2.2 and 2.3 display results for the AD and MAD methods, respectively.

Critical values for the "t-like"statistic, that is, the standardized statistic, were

calculated from a standard Gaussian distribution. σn stands for the "asympto-

22



tic"standard deviations and they were calculated taking into account the mean

values of correlations presented in Table 2.1.

In general, the AD and MAD procedures present quite similar results regar-

ding the bias. Although the latter is oversized, it has smaller MSE and higher

power than AD, which presents empirical size always close to 5%.

Estimated values of b are well centered around the true value in all cases

considered. However, the bias increases as b becomes larger and close to one. In

addition, it seems that the bias does not depend on the q value.

The power of the MAD procedure increases signi�cantly since more frequen-

cies are introduced in the term D̂(λm). In addition, the power decreases signi�-

cantly when a higher value of q is chosen. This is an expected result, since the

variance depends positively on q.

As will be discussed in Section 4.2, an advantage of the AD and MAD tests

over the one proposed in Velasco (2003) is that they are robust against β values.

Tabela 2.1: Simulated values for correlations used in the asymptotic variance
of AD and MAD

b̂AD b̂MAD

n 150 300 500 Mean 150 300 500 Mean

q
0.60 0.4701 0.4611 0.4583 0.4631 0.6733 0.6749 0.6692 0.6725
0.65 0.4629 0.4641 0.4401 0.4557 0.6739 0.6455 0.6825 0.6673
0.70 0.4430 0.4895 0.4782 0.4702 0.6606 0.6802 0.6754 0.6721
0.75 0.4633 0.4671 0.4695 0.4666 0.6945 0.6692 0.6639 0.6759
0.80 0.4924 0.4643 0.4803 0.4790 0.6809 0.6640 0.6587 0.6678
0.85 0.4733 0.4784 0.4915 0.4811 0.6513 0.6813 0.6736 0.6687
0.90 0.4857 0.4558 0.4645 0.4686 0.6892 0.7083 0.6863 0.6946
0.95 0.4917 0.4628 0.4857 0.4801 0.6867 0.6912 0.6962 0.6914

Table 2.4 shows the critical values for the LDR test using the three sample
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sizes: n = {100, 500, 1000}. These values were used to compute the results given

in Table 2.5, which displays the performance of LDR method. In Table 2.5, σn

refers to exact standard deviation calculated by .2.7.

Similar to the previous procedures, LDR method produced estimated values

of b that are centered around the true value in all cases, except for b = 1.

The empirical size for the LDR procedure is always close to the 5%. Based

on Figure 2.1, the LDR statistic completely dominates the averaged determinant

statistics. Note that, the asymptotical behavior of LDR, AD and MAD, under

H1, have not been not been established yet.

In addition to the better power perfomace, there are two advantages of LDR

over AD and MAD. First, the variance is known and it is easy to be calculated

and the second one is that the empirical distribution for small sample sizes can

be easily obtained.

Figure 2.2 plots the "t-like"densities for all tests, AD, MAD and LDR and

the standard Gaussian density. For AD and MAD, the densities were computed

only for q = 0.6, since this presented better power than q = 0.8.

One can see that the empirical densities of AD are closer to the Normal density

curve than the MAD. As expected, the density of LDR statistic is very close to

the standard Gaussian density, even for n = 100.

Based on the previous discussions of the advantages of the LDR test over the

AD and MAD methods, the �rst method is now compared with the residual based

tests given in Dittmann (2000). The tests are: GPH, Lagrange Multiplier (LM)4,

Modi�ed Rescaled Range (MRR)5, Phillips-Perron ρ-test (PPρ), Phillips-Perron

4See Lobato and Robinson (1998) for details
5See Lo (1991) for details
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t-test (PPt) and Augmented Dickey-Fuller (ADF) 6.

In order to make the above comparison, the same experiments conducted by

Dittmann (2000) were also used here to obtain the empirical size and power of

the LDR test and these are displayed in Table 2.6, which also includes the results

from Table A3 in Dittmann (2000).

In general, it can be observed that LDR plays an intermediate role when

compared to other tests. When sizes are evaluated, that is, when the simulated

series are ARIMA(1,1,0) and ARIMA(0,1,1) models, LDR completely dominates

the frequency domain GPH and LM tests by presenting less oversized signi�cance

levels. In the case of the time domain tests, LDR displayed better sizes than

PPρ and PPt in most of the cases. The ADF and MRR tests show the best

size performance among the evaluated tests. However, they have less power

when n ≥ 250 and when d is close to the null hypothesis of non-cointegration.

The remaining tests possess higher power in the majority of cases. The only

exceptions are the PPρ and PPt tests that lose power when models are near to

the null hypothesis for sample sizes equal or greater than 250.

6See Hamilton (1994) for details of Phillips-Perron ρ-test, Phillips-Perron t-test and Aug-
mented Dickey-Fuller test
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Tabela 2.2: Estimates, size and power for the AD method at 5% signi�cance level

q = 0.6 b=0 b=0.1 b=0.2 b=0.5 b=0.7 b=1
n = 100 Mean 0.0177 0.1052 0.2086 0.4627 0.6373 0.9082
σn = 0.4116 Sd 0.4186 0.4228 0.4292 0.4732 0.4902 0.5558

MSE 0.1755 0.1788 0.1843 0.2253 0.2441 0.3173
Rejection 0.0540 0.0900 0.1374 0.3160 0.4611 0.6494

n = 500 Mean 0.0066 0.1073 0.1976 0.4918 0.6804 0.9581
σn = 0.2312 Sd 0.2384 0.2452 0.2485 0.2762 0.3034 0.3232

MSE 0.0569 0.0602 0.0617 0.0763 0.0924 0.1062
Rejection 0.0597 0.1351 0.2271 0.6474 0.8383 0.9646

n = 1000 Mean 0.0044 0.1056 0.2038 0.4987 0.6880 0.9661
σn = 0.181 Sd 0.1839 0.1875 0.1921 0.2162 0.2334 0.2504

MSE 0.0338 0.0352 0.0369 0.0467 0.0546 0.0638
Rejection 0.0520 0.1534 0.3111 0.8246 0.9583 0.9974

q = 0.8 b=0 b=0.1 b=0.2 b=0.5 b=0.7 b=1
n = 100 Mean 0.0446 0.1013 0.1999 0.4756 0.6551 0.8945
σn = 0.9512 Sd 0.9862 0.9750 1.0047 1.0977 1.1613 1.2288

MSE 0.9743 0.9504 1.0092 1.2052 1.3503 1.5206
Rejection 0.0626 0.0654 0.0857 0.1557 0.2111 0.2874

n = 500 Mean -0.0052 0.1043 0.2133 0.4949 0.6798 0.9738
σn = 0.5343 Sd 0.5389 0.5503 0.5690 0.6067 0.6526 0.7101

MSE 0.2903 0.3027 0.3239 0.3680 0.4262 0.5048
Rejection 0.0480 0.0791 0.1251 0.2637 0.3826 0.5491

n = 1000 Mean 0.0113 0.0976 0.2103 0.4940 0.6797 0.9790
σn = 0.4182 Sd 0.4255 0.4243 0.4392 0.4842 0.5057 0.5338

MSE 0.1811 0.1799 0.1929 0.2344 0.2560 0.2853
Rejection 0.0543 0.0860 0.1377 0.3500 0.4923 0.7146
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Tabela 2.3: Estimates, size and power for the MAD method at 5% signi�cance level

q = 0.6 b=0 b=0.1 b=0.2 b=0.5 b=0.7 b=1
n = 100 Mean 0.0118 0.1133 0.2118 0.4732 0.6548 0.8929
σn = 0.2972 Sd 0.3088 0.3222 0.3328 0.3747 0.4035 0.4386

MSE 0.0955 0.1040 0.1109 0.1411 0.1648 0.2037
Rejection 0.0683 0.1277 0.1966 0.4786 0.6417 0.8200

n = 500 Mean 0.0093 0.1033 0.2030 0.4946 0.6758 0.9538
σn = 0.1669 Sd 0.1763 0.1795 0.1925 0.2148 0.2308 0.2619

MSE 0.0312 0.0322 0.0371 0.0462 0.0539 0.0707
Rejection 0.0723 0.1720 0.3463 0.8497 0.9591 0.9966

n = 1000 Mean 0.0033 0.1051 0.1988 0.4961 0.6875 0.9690
σn = 0.1307 Sd 0.1345 0.1419 0.1476 0.1726 0.1880 0.2042

MSE 0.0181 0.0201 0.0218 0.0298 0.0355 0.0426
Rejection 0.0609 0.2134 0.4540 0.9563 0.9954 1.0000

q = 0.8 b=0 b=0.1 b=0.2 b=0.5 b=0.7 b=1
n = 100 Mean 0.0339 0.1329 0.2321 0.4738 0.6482 0.8963
σn = 0.6803 Sd 0.6901 0.7172 0.7386 0.7927 0.8413 0.9111

MSE 0.4772 0.5153 0.5464 0.6289 0.7103 0.8407
Rejection 0.0671 0.0954 0.1174 0.1983 0.2766 0.3883

n = 500 Mean 0.0149 0.1236 0.2118 0.4859 0.6843 0.9584
σn = 0.3821 Sd 0.3911 0.4036 0.4214 0.4593 0.4923 0.5432

MSE 0.1532 0.1634 0.1777 0.2111 0.2425 0.2967
Rejection 0.0643 0.1063 0.1637 0.3589 0.5297 0.7160

n = 1000 Mean 0.0042 0.1042 0.1979 0.4952 0.6873 0.9595
σn = 0.2991 Sd 0.3093 0.3117 0.3261 0.3716 0.3876 0.4285

MSE 0.0957 0.0972 0.1063 0.1381 0.1504 0.1852
Rejection 0.0657 0.1117 0.1846 0.4911 0.6857 0.8631
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Tabela 2.4: Critical values for LDR t− like statistic

Signi�cance Level 90% 95% 99%
n = 100 1.2804 1.6792 2.4980
n = 500 1.2845 1.6801 2.4494
n = 1000 1.2890 1.6796 2.4380

Tabela 2.5: Estimates, size and power for the LDR method at 5% signi�cance level

b=0 b=0.1 b=0.2 b=0.5 b=0.7 b=1
n=100 mean 0.0018 0.1020 0.2104 0.4764 0.6487 0.8689
σn = 0.2433 sd 0.2424 0.2401 0.2467 0.2505 0.2536 0.2736

mse 0.0588 0.0576 0.0610 0.0633 0.0669 0.0920
Rejection 0.0483 0.0991 0.2017 0.5951 0.8297 0.9571

n=500 mean -0.0008 0.1056 0.1978 0.4830 0.6562 0.8545
σn = 0.1134 sd 0.1134 0.1129 0.1141 0.1145 0.1205 0.1583

mse 0.0129 0.0128 0.0130 0.0134 0.0164 0.0462
Rejection 0.0531 0.2274 0.5169 0.9963 1.0000 1.0000

n=1000 mean 0.0023 0.1013 0.1994 0.4854 0.6639 0.8560
σn = 0.0859 sd 0.0879 0.0871 0.0847 0.0871 0.0970 0.1385

mse 0.0077 0.0076 0.0072 0.0078 0.0107 0.0399
Rejection 0.0571 0.3086 0.7397 1.0000 1.0000 1.0000
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Tabela 2.6: Size and power comparison at 5% signi�cance level

Power Size

I(d) processes with d = ARIMA(1,1,0) with φ = ARIMA(0,1,1) with θ =
Sample Size Test 0.1 0.3 0.5 0.7 0.9 -0.474 -0.412 -0.333 -0.231 -0.091 0.718 0.525 0.382 0.245 0.092

100 GPH 98.93 97.05 84.02 45.15 11.11 10.15 10.53 10.12 8.56 6.85 86.37 46.98 24.98 13.18 6.71
LM 99.89 99.25 92.96 60.92 13.35 16.8 17.48 16.06 13.65 8.13 96.53 71.84 44.08 22.43 8.68

MRR 15.32 26.15 30.82 24.19 9.58 2.2 3.16 4.27 5.33 5.87 5.34 5.98 6.08 6.6 5.78
PPρ 100 100 96.26 52.57 11.22 23.85 20.06 14.7 10 6.54 89.32 51.25 25.96 13.84 6.86
PPt 100 100 95.28 48.83 10.45 23.82 20.01 14.78 9.79 6.42 89.32 50.77 25.39 13.17 6.68
ADF 98.33 93.44 70.88 36.33 9.46 4.73 5.82 6.72 6.83 5.73 41.85 17.77 11.06 9.06 5.74
LDR 93.59 82.47 60.53 30.44 10.38 9.82 8.98 8.59 7.64 6.13 72.94 36.53 19.88 10.96 6.46

250 GPH 99.99 99.99 99.78 85.07 18.63 10.43 10.55 10.88 9.88 7.57 96.77 61.09 31.11 16.39 8.01
LM 100 100 99.96 94.4 25.25 14.83 15.14 15.07 13.88 8.97 99.26 82.4 51.22 26.86 10.02

MRR 61.49 72.15 68.09 46.55 13.91 2.73 3.32 4.51 5.21 6.1 8.83 5.46 5.85 6.04 5.75
PPρ 100 100 99.98 78.65 15.36 20.66 16.18 11.95 9.49 6.58 89.39 47.19 22.2 11.4 6.88
PPt 100 100 99.94 75.98 13.84 20.66 15.79 11.72 9.16 6.18 89.22 46.66 21.55 10.87 6.52
ADF 99.97 99.48 89.75 50.78 12.3 4.59 4.54 5.2 5.76 5.89 23.96 9.89 7.32 6 5.93
LDR 99.9 99.36 93.28 58.81 15.06 8.67 8.16 7.93 7.1 5.84 88.43 43.18 20.75 10.8 6.46

500 GPH 100 100 100 98.38 30.49 10.18 9.69 9.81 9.41 7.62 93.98 68.8 34.95 17.64 8.55
LM 100 100 100 99.77 41.43 13.6 13.04 13.8 12.98 10.2 99.62 86.5 55.26 28.7 11.21

MRR 95.61 97.82 94.46 68.75 17.77 3.41 4.22 4.56 5.27 5.8 13.58 6.5 5.75 5.98 5.58
PPρ 100 100 100 90.16 19.13 17.95 13.96 10.21 7.73 5.75 87.16 41.21 18.9 9.8 6.47
PPt 100 100 100 88.3 16.82 17.17 13.23 9.91 7.14 5.41 86.81 40.59 18.15 9.32 6.22
ADF 100 99.97 97.81 65.72 14.45 4.44 4.75 5.02 4.64 5.03 16.34 8.09 6.38 5.94 5.6
LDR 100 99.99 99.6 82.56 21.1 7.56 7.64 7.34 6.91 5.67 92.81 42.08 18.71 10.32 6

1000 GPH 100 100 100 99.99 50.39 9.79 9.65 9.98 9.72 7.98 98.91 75.47 38.43 19.31 8.9
LM 100 100 100 100 66.16 13 12.78 13.2 12.93 11.12 99.66 88.94 59.45 60.51 12.79

MRR 99.91 99.98 99.79 88.64 23.93 4.11 4.89 5.19 5.7 5.74 16.92 6.82 6.07 6.11 5.88
PPρ 100 100 100 96.29 24.24 15.12 11.23 8.97 7.32 6.03 84.51 35.51 17.93 8.47 6
PPt 100 100 100 95.46 21.54 14.55 10.66 8.55 7 6.02 84 34.66 14.21 8.29 5.96
ADF 100 100 99.76 79.21 17.95 5.05 4.79 4.56 4.85 5.43 12.88 6.85 5.82 5.67 5.4
LDR 100 100 100 96.4 29.95 7.29 7.03 6.01 6.43 5.9 94.71 39.67 16.69 9.38 5.98

Note: Values from GPH, LM, MRR, PPρ, PPt and ADF are from Table A3, p. 638 by Dittmann (2000).
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Figura 2.1: Power of AD, MAD and LDR at 5% signi�cance level
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2.4.2 Robustness to di�erent values of cointegration decli-

vity (β) - A comparison with log coherence regression

This subsection discusses the robustness properties of LDR, AD, MAD and the

estimator given in Velasco (2003) over the declivity (β) values. Velasco (2003)

proposed a method to estimate parameter b and test the null of cointegration

based on a regression of logged squared coherence between the pair of series

(X1,t, X2,t) on logged Fourier frequencies. This procedure exploits the fact that

near zero frequency the squared coherence for cointegrated series converges to 1.

The LCR method is built for a non di�erentiated vector (X1,t, X2,t) where

Xi,t ∼ I(d), i ∈ {1, 2}, with d ∈ (0, 1.5). In the context that the series are

non-stationary, the author suggests to use data tapering for controlling the peri-
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Figura 2.2: Empirical densities of standardized statistics for AD, MAD and
LDR
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Note: Solid lines are Gaussian density functions and dashed lines are the empirical densities.

odogram bias. He shows the consistency of his estimator when 0 < b ≤ d, that is,

when the vector are cointegrated. When the vector (X1,t, X2,t) is non-stationary

its spectral density matrix, denoted by H (λ), becomes , as mentioned early, a

pseudo-spectral density matrix. H (λ) is given by:

H(λ) = λ−2d

 Gxx Gxeλ
b

Gexλ
b Geeλ

2b

 (1 +O(λ2)) as λ→ 0+ (2.4.1)

for some constants |Gab| < ∞, a, b ∈ {x, e} where the matrix G = {Gab} is

Hermitian and nonsingular. The pseudo-spectral density for X1,t and the cross

pseudo spectral density for X1,t and X2,t can be written, respectively as:

fX1X1
(λ) = β2fX2X2

(λ) + fεε(λ) + 2βRefεX2
(λ) ∼ β2Gxxλ

−2d as λ→ 0+ (2.4.2)
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and

fX2X1
(λ) = βfX2X2

(λ) + fX2ε(λ) ∼ βGxxλ−2d as λ→ 0+ (2.4.3)

where Re(z) means the real part of a complex number z. The squared coherence

|κX1X2(λ)|2 between X1,t and X2,t can be written as:

|κX1X2 (λ)|2 = 1− fεε (λ)

fX1X1 (λ)
+

|fεX2 (λ)|2

fX1X1 (λ) fX2X2 (λ)
. (2.4.4)

Replacing the approximations in Equations 2.4.1, 2.4.2 and 2.4.3 into the above

expression and taking logs yield:

ln (1− |κX1X2(λ)|2) ∼ lnGH + 2b lnλ as λ→ 0+ (2.4.5)

where 0 < GH <∞ and GH = Gee

β2Gxx

[
1− |Gex|2

GxxGee

]
.

Using consistent estimates of |κX1X2 (λ)|2, the parameter b can be estimated

by regressing ln
(
1− |κ̂X1X2(λ)|2

)
on logged values of frequencies λ around the

origin. This estimator is denoted here by the log coherence regression (LCR).

Despite LCR di�ers from AD, MAD and LDR in terms of the null hypothesis,

the method also estimates the same parameter, b, which makes the comparison

meaningful.

Although LCR asymptotically does not depend on β, this parameter can be

in�uential on small samples. Simulation results presented in this section show

that, in fact, the values of β can a�ect the estimated values for b. On the other

hand, the determinant based estimators, LDR, AD and MAD, are una�ected by

the choice of β.

To evaluate the robustness properties of the estimators over β values, a Monte
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Carlo experiment was conducted with CI(1, 1). Parameter β varies in the range

{1, 0.5, 0.125, 0.065}. The system described in Equation 2.2.1 was simulated with

innovations following a Gaussian white noise process with σ2
η = 1, σ2

w1
= 1,

σ2
w2

= 0 and β2 = 1 (which makes X2,t = Tt and cov (εt, X2,t) = 0). In all

replications the sample size was �xed at n = 256 in order to keep comparability

to the models simulated by Velasco (2003)7.

Bandwidth for LCR was �xed atm = 36 since this value has displayed the best

results, in terms of mean squared error, for most models considered in Velasco

(2003). For AD, MAD and LDR, the bandwidth was �xed at m = n0.7, which

was the usual choice of the present work, while the parameter q was set equal to

0.6 for AD and MAD. Table 2.7 presents the mean of the estimates, the standard

deviation and the mean squared error.

As displayed in Table 2.7, the LCR is not robust to di�erent values of the

cointegration vector β. The bias and mean squared errors of estimates increase

with decreasing β. The AD and MAD seem to be the less biased estimators

and insensitive to variations in β while LDR, although biased, produced the best

performance in terms of mean squared error and is also insensitive to the changes

in the cointegration vector. These simulations illustrate that LCR is not a very

reliable estimator for small samples.

7In the LCR models simulated here a Zhurbenko data taper of order 2 was used as suggested
by the author. It means that the fast Fourier transform used to calculate the periodogram

assumes the form:

∣∣∣∣ n∑
t=1

htXte
−iλt

∣∣∣∣2 were ht is the data taper such that ht = 1−
∣∣∣ t−n/2n/2

∣∣∣. Also,
estimates of 2.4.4 are using previously de�ned spectral estimates with uniform weights over 3
Fourier frequencies. See Velasco (2003) for details
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Tabela 2.7: Robustness properties of the methods to β variations

β Statistic b̂LCR b̂AD b̂MAD b̂LDR

1
Mean 0.8399 0.9482 0.9719 0.8505
Sd 0.2195 0.4147 0.3253 0.1882
MSE 0.0738 0.1746 0.1066 0.0578

0.5
Mean 0.6718 0.9353 0.9655 0.8531
Sd 0.1991 0.4063 0.3287 0.1938
MSE 0.1474 0.1692 0.1092 0.0591

0.125
Mean 0.2190 0.9199 0.9722 0.8570
Sd 0.1550 0.4052 0.3286 0.1867
MSE 0.6341 0.1706 0.1087 0.0553

0.065
Mean 0.0814 0.9502 0.9705 0.8529
Sd 0.1256 0.4125 0.3298 0.1844
MSE 0.8596 0.1726 0.1096 0.0556

2.5 Application

The methodologies previously described were applied to monthly observations

of logged stock values for United States markets (Dow Jones Industrial Average

Index - DJ) and United Kingdom markets (Financial Times Stock Exchange 100

- FTSE). Data ranges from January 1985 to May 2014. Looking at Figure 2.3 it

can be seen that stock values in US and UK markets seem to share some long-run

relationship.

Firstly, GPH was employed in both series to estimate d using two di�erent

values of bandwidth n0.5 and n0.7. For the DJ series the estimated values of d were

0.9281 (sd = 0.1942) and 0.9878 (sd = 0.0941) for n0.5 and n0.7, respectively, while,

for the FTSE series, estimated values of d were 0.9490 (sd = 0.1941) and 1.0181

(sd = 0.0941) for n0.5 and n0.7, respectively. These results were used to calculate

the t-like statistic for the GPH unit root test (see Santander et al. (2003)) in which

the null hypothesis is H0 : the series is I(1) versus H1 : the series is I(d), d < 1.

In addtion, the ADF and PP tests were also implemented. From Table 8 it can
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be seen that these tests suggest that both series have a unit root.

The next step was to test the null of non-cointegration using LDR, AD, MAD

and also using GPH and EG8. The last two tests were performed on the residuals

of the regression equation for DJ and FTSE. Values for AD and MAD were

obtained using q = 0.6. Estimated values for parameter b using LDR, AD, MAD

and GPH (which was obtained using 1 − d̂res, where d̂res is the estimated d for

regression residuals) can be seen in Table 2.9. Note that the EG test does not

estimate the parameter b.

The results in Table 2.9 indicated that the series are not cointegrated, which

is in accordance with the most of the empirical evidence discussed in the lite-

rature, that is, most of the international stock prices analysed are not pairwise

cointegrated (see Aloy et al. (2013) or Kanas (1998)).

2.6 Conclusion

The present work investigates the properties of the determinant of the spectral

density matrix close to the origin for bivariate cointegrated series and proposes

methods to test the null hypothesis of non-cointegration based on these proper-

ties.

The determinant of the spectral density matrix for the �rst di�erence series is

a power function of the parameter b, which determines the reduction in the order

of integration of the error series. Two di�erent statistics were considered: the log

determinant regression and semiparametric averaged determinant estimator.

Monte Carlo simulations showed that the methods presented here possess, in

8Critical values for GPH test can be found in Santander et al. (2003). For EG test see
MacKinnon (1991) while for AD and MAD asymptotic standard Gaussian values were used
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Tabela 2.8: Values of unit root test statistic and critical values

GPHa(n0.5) GPHa(n0.7) ADF PP

DJ -0.3702 -0.1297 2.2928 -1.8714
FTSE -0.2628 0.1923 1.5746 -2.0234
Critical Values
(α = 5%)

-1.61 -1.58 -1.95 -2.87

Critical Values
(α = 10%)

-1.16 -1.18 -1.62 -2.57

a Critical values for GPH test can be found in Santander et al. (2003)

Tabela 2.9: Estimates for b and test statistic for non-cointegration
between DJ and FTSE

LDR AD MAD GPHab EG

Bandwidth n0.5 n0.7 n0.5 n0.7 n0.5 n0.7 n0.5 n0.7 -

b̂ -0.14 0.02 -0.45 0.30 -0.24 0.14 -0.14 0.03 -
Standard Deviations 0.29 0.13 0.51 0.27 0.36 0.19 0.19 0.09 -
t-like Statistic -0.49 0.18 -0.88 1.11 -0.67 0.74 -0.74 0.32 -2.27
Critical Values
(α = 5%)

1.68 1.68 1.64 1.64 2.24 2.11 -2.87

Critical Values
(α = 10%)

1.29 1.29 1.28 1.28 1.78 1.67 -2.57

a In order to keep comparability with LDR, AD and MAD, critical values were adjusted
to test H0 : 1− dres = 0 versus H1 : 1− dres > 0

b Critical values for GPH test can be found in Santander et al. (2003)

36



Figura 2.3: Logarithm of stock values, Dow Jones (solid) and FTSE 100 (dot-
ted)

1985 1990 1995 2000 2005 2010 2015

7.
5

8.
0

8.
5

9.
0

9.
5

1985 1990 1995 2000 2005 2010 2015

7.
5

8.
0

8.
5

9.
0

9.
5

general, correct size. The log determinant regression showed good power for mo-

derate sample size. In addition, Monte Carlo simulations also showed that both

methods are insensitive to the choice of cointegration relationship (the β parame-

ter). Some properties of the above statistics under the null of non-cointegration

were discussed and the current research is investigating the asymptotic properties

under the alternative hypothesis as well as the extension of those proposals to

a higher dimension vector allowing more than one cointegration relationship. In

addition, a version of these tests which is robust to the presence of outliers is

being investigated.
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.1 Technical Lemmas

Before proving the propositions, one should consider the following Lemmas:

Lemma 1. (Hurvich and Beltrao (1994) pg. 301)

Let Zj = ln (2− 2 cosλj) and Z̃j = Zj − Z̄, j = 1, ...,m, where Z̄ is the mean of

Zj. Thus,
m∑
j=l

Z̃j
2

= m+ o(m).

Lemma 2. Let Zj = ln (2− 2 cosλj) and Z̃j = Zj − Z̄, j = 1, ...,m, where Z̄ is

the mean of Zj. Thus, Zj = O(lnm).

Demonstração. Hurvich and Beltrao (1994) state that Zj = ln j− 1
m

lnm! +o(1),

where the �rst term, ln j = O(lnm) ∀j = 1, ...,m. The following limit,

lim
m→∞

1

m
lnm!

is an indeterminate form of the type ∞∞ . By the L'Hospital's rule, the previous

limit can be rewritten as: limm→∞ ψ
(0)(m+1). Equation 6.3.18 from Abramowitz

and Stegun (1972), pg. 259, states that: ψ(0)(z) ∼ ln z− 1
2z
− 1

12z2
+ 1

120z4
− 1

256z6
+...

as z →∞. As a result, ψ(0)(z) = O(ln z) and, consequently, Zj = O(lnm).

Lemma 3. Let ψ(1)(u) be the Polygamma function of order 1, that is, ψ(1)(u) =

d2 ln Γ(u)
du2

. Then, for z ∈ N∗, limz→∞ ψ
(1)(z) = 0.

Demonstração. Je�rey and Zwillinger (2007), pg.905, state that for any z ∈ N∗,

ψ(1)(z) = π2

6
−

z−1∑
k=1

1
k2
. Thus, limz→∞ ψ

(1)(z) = π2

6
− limz→∞

z−1∑
k=1

1
k2
. In addition,

Je�rey and Zwillinger (2007), pg.8, state that limz→∞
z−1∑
k=1

1
k2

= π2

6
, as a result,

limz→∞ ψ
(1)(z) = 0.
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.2 Proof of Proposition 1

1. Under Assumption 1, the determinant D(λj) is constant across di�erent

frequencies, that is, D(λj) = Λ, for all λj ∈ (0, 2π], where Λ is a positive

constant. In this case, for a �xed r, Goodman (1963) points out that

the distribution of the random variable Dj = ln
[
4 (2r + 1)2 D̂r(λj)/Λ

]
is

the same of ln(χ2
(4r+2)χ

2
(4r)) where χ

2
(4r+2) and χ

2
(4r) are chi-squared random

variables with (4r + 2) and 4r degrees of freedom, respectively. In addition,

the characteristic function of Dj is:

φD(t) = 4it
Γ(2r + 1 + it)Γ(2r + it)

Γ(2r + 1)Γ(2r)
. (.2.1)

Taking the �rst derivative of φD(t) evaluated at t = 0 yields:

dφD(t)

dt
t=0 = (ψ(0)(2r + 1) + ψ(0)(2r) + ln 4)i. (.2.2)

Then, E [Dj] = ψ(0)(2r + 1) + ψ(0)(2r) + ln 4. Since Dj = ln
[
D̂r(λj)

Λ

]
+

ln
[
4 (2r + 1)2], one can see that:

E

[
ln

[
D̂r(λj)

Λ

]]
= ψ(0)(2r + 1) + ψ(0)(2r)− 2 ln (2r + 1). (.2.3)

Let ζj =
{

ln
[
D̂r(λj)

Λ

]
− c(r)

}
, where c(r) = E

[
ln
[
D̂r(λj)

Λ

]]
. It is easy

to see that ζj is a random variable such that E [ζj] = 0. In addition, if

Assumption 1 holds, then term ln
G(λj)

G(0)
in Equation 2.3.5 is equal to zero
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since G(λj) = G(0), ∀λj. Let a = lnG(0) + c(r). It can be seen that:

E
[
b̂LDR

]
= E

( m∑
j=l

Z̃j
2

)−1 m∑
j=l

Z̃j(a+ bZj + ζj)

 =

b+

(
m∑
j=l

Z̃j
2

)−1 m∑
j=l

Z̃jE [ζj] = b. (.2.4)

Moreover, under Assumption 1, b = 0. Thus, E
[
b̂LDR

]
= 0.

2. The variance V
[
b̂LDR

]
is equal to the variance of the term

(
m∑
j=l

Z̃j
2

)−1
m∑
j=l

Z̃jζj.

Under Assumption 1, the set of random variables ζj, j = 1, ...,m is inde-

pendent and identically distributed. Therefore, V
[
b̂LDR

]
is:

V
[
b̂LDR

]
=

V [ζ]
m∑
j=l

Z̃j
2
, (.2.5)

where V [ζ] is the variance of ζj for all j which is the same variance of

the random variable Dj. In turn, the variance of Dj can be obtained from

the �rst and second derivatives of function φD(t). The second derivative of

function in Equation .2.1 at t = 0 is:

d2φD(t)

dt2
t=0 = −

[
2 ln 4 + ψ(0)(2r)

2
+ 2ψ(0)(2r + 1)

(
ln 4 + ψ(0)(2r + 1)

)
+ψ(0)(2r + 1)

(
ln 16 + ψ(0)(2r + 1)

)
+ ψ(1)(2r) + ψ(1)(2r + 1)

]
. (.2.6)

From Equations .2.2 and .2.6, the variance of D is ψ(1)(2r + 1) + ψ(1)(2r).
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Replacing the quantity ψ(1)(2r + 1) + ψ(1)(2r) in Equation .2.5 yields:

V
[
b̂LDR

]
=
ψ(1)(2r + 1)ψ(1)(2r)

m∑
j=l

Z̃j
2

. (.2.7)

3. The proof of this part follows immediately from Lemma 1.

.3 Proof of Proposition 2

Let the sequence of random variables Umj, j ≤ m form the following triangular

array:

U1,1;

U2,1, U2,2;

· · · · · · · · · · · · · · · ;

Um,1, Um,2 · · · , Um,m,

(.3.1)

where the random variables in each row of .3.1 are independent and for each m

and j,

E {Umj} = 0 (.3.2)

and V {Umj} = σ2
mj such that σ2

mj <∞ and

s2
m =

m∑
j=1

σ2
mj = 1. (.3.3)
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Theorem 7.2.1 given in Chung (2001) states that, for a triangular array where the

conditions established by Equations .3.2 and .3.3 hold, the sum Sm =
m∑
j=1

Umj
d→

N (0, 1), as m→∞.

In order to prove Proposition 2, one can observe that term

(
m∑
j=l

Z̃j
2

)−1
m∑
j=l

Z̃jζj,

under Assumptions 1 and 2, satis�es Equations .3.2 and .3.3. For all j ≤ m, let

U1j = U2j = · · · = Umj =
Z̃jζj√

m∑
j=l

Z̃j
2

(ψ(1)(2r + 1) + ψ(1)(2r))

. (.3.4)

Since the random variables Umj are the same across rows, the subscript m

can be dropped. By the de�nition of Uj one can see directly that E {Sm} = 0.

By Lemmas 1 and 2,V {Uj} =
Z̃j

2

m∑
k=l

Z̃k
2
<∞. Therefore, V {Sm} = V

{
m∑
j=1

Uj

}
=

m∑
j=l

Z̃j
2

m∑
k=l

Z̃k
2

= 1. As a result,

√
m∑
j=l

Z̃j
2

ψ(1)(2r+1)+ψ(1)(2r)
b̂LDR

d→ N (0, 1) as m→∞.

.4 Proof of Proposition 3

1. Under Assumption 1, D(λ) = Λ, for all λ ∈ [0, 2π), where Λ is a positive

constant. Thus, D(λj) = D(qλk) = Λ for all j, k = 1, ...,m. Therefore:

E
[
b̂AD

]
=
{

E
[
ln
[
D̂(qλm)/Λ

]]
− E

[
ln
[
D̂(λm)/Λ

]]}
(2 ln q)−1 . (.4.1)

Since the terms D̂(qλm) and D̂(λm) use the same number of frequencies,

by Equation .2.3, E
[
ln
[
D̂(qλm)/Λ

]]
= E

[
ln
[
D̂(λm)/Λ

]]
= ψ(0)(m) +
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ψ(0)(m− 1)− 2 ln (m). Therefore, E
[
b̂AD

]
= 0.

2. Let L1 and L2 be identically distributed random variables with variance

σ2
L < ∞ and correlation coe�cient ρL1,L2 , such that |ρL1,L2| < 1. Thus,

V [L1 − L2] = 2σ2
L (1− ρL1,L2). Let now L1 ≡ ln

[
D̂(qλm)/Λ

]
(2 ln q)−1

and L2 ≡ ln
[
D̂(λm)/Λ

]
(2 ln q)−1. By the Equations .2.2 and .2.6, V [L1] =

V [L2] = ψ(1)(m− 1) + ψ(1)(m). Therefore,

V
[
b̂AD

]
=
(
ψ(1)(m− 1) + ψ(1)(m)

)
(1− ρL1,L2) /

{
2 (ln q)2} . (.4.2)

3. The proof of this part follows immediately from Lemma 3.

44



Capítulo 3

Additional Results: Robustness to

outliers

The classical periodogram is a widespread tool in the context of the spectral

analysis of time series. However, as pointed out by Fox (1972) it is very sensitive

to the presence of outliers and, therefore, it becomes a useless tool in situations

where the data is contaminated by atypical observations. Since additive outliers

are quite common in practice, to de�ne a new periodogram robust to the presence

of these atypical observations is a valuable task that has a real practical interest.

Many approaches have been proposed in the time series literature in order to

access robust periodograms see for example, the references discussed in Li (2008).

Most of these references, however, concern weakly dependent time series.

In the long-memory framework, Molinares et al. (2009) suggested a robust

plug-in periodogram, that is, a periodogram obtained by replacing, in the classical

periodogram, the standard sample autocovariance by the robust autocovariance

given in Ma and Genton (2000). In order to deal with outliers, Molinares et al.
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(2009) introduced a robust estimator of the memory parameter d in the ARFIMA

model. A review of robust methods in the frequency domain and their use in

practical contexts can be found in Reisen and Molinares (2012). To verify the

precision of the asymptotic theory on the robust estimation of the autocovariance

and also on the parameters of the models, simulation studies for �nite sample sizes

were discussed in the previous references. In general, the empirical studies show

that the estimators, based on the robust autocovariance, are outlier resistant and

very useful in applied works. However, the robustness properties of the estimators

weakens when the data deviates from the Gaussian assumption, that is, when the

series has a heavy-tailed distribution.

This may be explained by the fact that the robust autocovariance function

involves a constant which depends strongly on the Gaussian distribution assump-

tion. In addition, the robust autocovariance estimator does not have the non-

negative de�nite property, and becomes useless in the context of non-stationary

process such as, for example, the ARFIMA process for 0.5 < d < 1.0. This para-

meter range is quite often encountered in time series with long-memory (Hurvich

and Ray (1995), Velasco (1999), Franco and Reisen (2007) among others).

To overcome some of the restrictive properties of the robust plug-in perio-

dogram, a periodogram robust to the presence of outliers was proposed by Li

(2010). Since the periodogram IX(λ) can be de�ned by IX(λ) = n
4

∥∥∥β̂n(λ)
∥∥∥2

,

where β̂n(λ) is obtained by regressing series Xt against harmonic components

ct(λ) := [cos(λt), sin(λt)]T :

β̂n(λ) = arg minβ∈<2

n∑
t=1

∣∣∣Xt − ct(λ)Tβ
∣∣∣2 (3.0.1)
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the robust periodogram is simply the solution of the above equation replacing

the L2 norm by an Lp norm:

β̂n(λ) = arg minβ∈<2

n∑
t=1

∣∣∣Xt − ct(λ)Tβ
∣∣∣p (3.0.2)

where p ∈ (0, 2). If p = 2, then the ordinary periogram is obtained. Thus, the ob-

jective of this chapter is evaluate the performance of tests present in the previous

chapter when the processes are contaminated by additive outliers and also the

performance of the tests when the periodogram given in Equation 3.0.2 is consi-

dered when calculating the spectral density matrix. The empirical eveluation is

divided in tow sets. The �rst set compares the GPH, AD and the LDR estima-

tors performances when no outliers are included to the processes when additive

outliers are present using the ordinary periodogram under the null hypothesis of

non-cointegration. The second set analyzes the same estimators introducing the

Lp norm for both: non-cointegrated and cointegrated series.

To the �nite sample size investigation, 1500 processes with sample size n =

250 were generated for non cointegrated data, that is, CI = (1, 1), and cointegra-

ted data, that is, CI = (1, 0). The parameter p varies in the set {1.75, 1.5, 1.2}.

Innovations where generated as zero mean gaussian white noise processes with

identity variance matrix. Each observation may contain an additive outlier in

the error term of the cointegration equation (εt) with value equal 8 times the

standard deviation with probability equal 0.01, that is, a random variable Ω is

drawn for each point of the series such that, P(Ω = 8) = P(Ω = −8) = 0.01 and

P(Ω = 0) = 0.98.

Table 3.1 presents the �rst set of simulations. For GPH two di�erent speci-
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�cations were considered. In the �rst one, GPH estimator was applied to OLS

residuals using Santander et al. (2003) critical values. In the second speci�ca-

tion, GPH was applied to di�erentiated OLS residuals and critical values are

from N(0, 1). The results show that all considered estimators su�er signi�cantly

when the processes are contaminated by additive outliers. All tests produced

biased estimates and consequently, remarkable size distortions. The worst case

is the �rst di�erence GPH estimator. This test is completely distorted when the

process is contaminated. The remainders estimators show quite similar results.

Since the all methods analyzed have showed size distortions, it can be worthwhile

to replace the ordinary periodogram by the Lp periodogram in Equation 3.0.2.

Now, table 3.2 displays the results for the mean of estimates, empirical standard

deviations, mean squared error, size and power of the four considered tests. It

can be seen that the GPH for the non-di�erentiated data is still oversized for the

three values of parameter p. It was an expected result since the Lp periodogram

cannot accommodate non-stationary data (for a wider discussion see Li (2010)).

The remainders tests presented acceptable results when p = {1.5, 1.2}. All the

three tests are still considerable oversized for p = 1.75. The best size performance

was played by the LDR estimator and, although the AD estimator has displayed

a better value than the LDR estimator when p = 1.2, the di�erence was small.

Evaluating the power, one can see that LDR estimator completely dominates

the AD estimator but does not dominate the ∆GPH which has displayed the best

results. However, the power performance of the three estimators (∆GPH, AD

and LDR) was very poor. An unexpected e�ect of the use of Lp periodogram was

that the value of estimated parameter b has been showed very biased under the

alternative hypothesis of non-cointegration. This suggests that Lp norm is not a
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very reliable option to estimate and test b. Additional research should investi-

gate the reasons why this is occurring when the series are non-cointegrated even

after di�erentiating. In addition, future research must evaluate the performance

di�erent robust peridograms (see Molinares et al. (2009) for examples).
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Tabela 3.1: Estimates, size and power under outliers presence vs outliers free

Statistics
bGPH

a b∆GPH bAD
a bLDR

No Outliers Outliers No Outliers Outliers No Outliers Outliers No Outliers Outliers
Mean 0.9724 0.9119 -0.0202 -0.8454 0.0000 0.1456 0.0021 0.0862

sd 0.1035 0.1083 0.1020 0.1746 0.2790 0.2932 0.1389 0.1458
MSE 0.0115 0.0195 0.0108 0.7452 0.0776 0.1071 0.0193 0.0287

Rejection 0.0473 0.1293 0.0813 0.9973 0.0487 0.1373 0.0483 0.1387
σn 0.1000 0.1000 0.2795 0.1417

a Since GPH was applied in the non-di�erentiated data, the expected value of b is 1.
b In order to compute σn to the AD estimator, values from Table 1 were used.

Tabela 3.2: Estimates, size and power using robust periodogram

CI = (1,1) CI = (1,0)
Estimator Statistics p = 1.75 p = 1.5 p = 1.2 p = 1.75 p = 1.5 p = 1.2

GPH

Mean 0.8233 0.8001 0.7154 -0.0061 -0.0063 -0.0062
sd 0.1034 0.1053 0.1168 0.0988 0.0985 0.0980

mse 0.0419 0.0511 0.0946 0.0220 0.0224 0.0219
Rejection 0.3447 0.4273 0.7360 1.0000 1.0000 1.0000

σn 0.1000

∆GPH

Mean -0.0450 -0.0229 -0.0091 -0.5931 -0.3778 -0.1993
sd 0.1038 0.1003 0.0981 0.1113 0.1015 0.1003

mse 0.0128 0.0106 0.0097 0.3641 0.1530 0.0498
Rejection 0.1220 0.0807 0.0667 0.9993 0.9853 0.6133

σn 0.1000

AD

Mean 0.0832 0.0243 0.0204 0.8021 0.5160 0.2267
sd 0.3130 0.3035 0.2934 0.3923 0.3430 0.3235

mse 0.1048 0.0926 0.0864 0.7972 0.3839 0.1560
Rejection 0.0960 0.0613 0.0567 0.7900 0.5320 0.2140

σn 0.2972

LDR

Mean 0.0404 0.0180 0.0155 0.5406 0.2905 0.1360
sd 0.1446 0.1410 0.1420 0.1467 0.1413 0.1407

mse 0.0225 0.0202 0.0204 0.2325 0.5233 0.7662
Rejection 0.0853 0.0640 0.0607 0.9833 0.6320 0.2347

σn 0.1417
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Capítulo 4

Conclusões

O presente trabalho investigou as propriedades do determinante da matriz de

densidade espectral próximo à origem para um vetor bi-variado. O determinante é

uma função potência do parâmetro que mensura a redução da ordem de integração

da série de erros, b. A partir disto, dois estimadores foram propostos para tal

parâmetro: o primeiro, baseado em Geweke and Porter-Hudak (1983), propôs

uma regressão do logaritmo do determinante da matriz espectral do processo

bivariado em estudo, o segundo um estimador semi-paramétrico do determinante

médio baseado na proposta de Robinson (1994).

O artigo também propõe testes sob a hipótese nula de não cointegração deri-

vados à partir dos estimadores apresentados. Estudos com amostras �nitas foram

realizados com o objetivo de avaliar, empiricamente, o desempenho dos estimado-

res e dos testes propostos através do cálculo do vício, do erro quadrático médio,

dos níveis de signi�cância e do poder. Os resultados apontam que os testes tem

nível de signi�cância empírico próximo do nível nominal. Além disso, o poder

dos testes revelou um desempenho similar quando comparado com outros testes
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clássicos na literatura de cointegração discutidos em Dittmann (2000).

Os métodos aqui discutidos mostraram-se robustos a diferentes parametriza-

ções da declividade da relação de cointegração (β). Foi investigada, ainda, as

propriedades empíricas de tais métodos sob a presença de outliers. Neste sen-

tido, o periodograma robusto à presença de outliers proposto em Li (2010) foi

utilizado a�m de obter-se testes resistentes à contaminação nos processos. O

desempenho dos testes não foi satisfatório quando o periodograma Lp foi consi-

derado. O estimadores apresentaram-se viciados para a hipótese alternativa e,

consequentemente, o poder foi baixo. Pesquisas futuras devem investigar os mo-

tivos pelos quais isto ocorre. Neste sentido, o desempenho dos testes com outros

periodogramas robustos à presença de outliers deve ser avaliado. Diversas alter-

nativas são discutidas em Reisen and Molinares (2012) e uma sequência natural

deste trabalho é avaliar o desempenho das mesmas.

Além da robustez a outliers, as pesquisas futuras investigarão o comporta-

mento dos testes utilizando periodogramas robustos a dados faltantes bem como

as propriedades assintóticas dos testes sob a hipótese de não-cointegração além

das propriedades dos testes sob o relaxamento de algumas hipóteses aqui assu-

midas como: erros ruídos brancos e séries integradas de ordem 1. Por �m, uma

versão multivariada destes testes deve ser considerada com o intuito de testar

múltiplos vetores de cointegração.
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