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Resumo

Esta tese se propoe a estudar a cointegracao fracionaria no dominio da frequén-
cia. Aqui investigam-se as restricoes que a auséncia ou nao de cointegracao
impoe sobre o determinante da matriz de densidade espectral de um vetor de
séries bivariado, integrado de ordem 1, quando avaliado na primeira diferenca.
Permite-se, aqui, que os erros da relacao de cointegracao sejam fracionalmente
integrados. Neste estudo ¢ mostrado que o determinante da matriz de densi-
dade espectral é uma funcao poténcia do parametro que mensura a reducao na
ordem de integragdo do erro (denotado por b) para um conjunto de frequéncias
de Fourier proximas da origem. A partir disto, duas propostas para a estimacao
do parametro de cointegracao b sao sugeridas. Testes sob a hipotese nula de nao
cointegracao sao derivados a partir dos estimadores apresentados e suas propri-
edades assintoticas discutidas. Estudos com amostras finitas foram realizados
com o objetivo de avaliar o desempenho empirico dos estimadores e dos testes
propostos através do calculo do vicio, do erro quadratico médio, dos niveis de
significancia e do poder. Os resultados sugerem que os testes possuem niveis de
significancia empiricos proximos aos niveis nominais. Além disto, o poder dos
testes apresenta um desempenho similar quando comparado com o desempenho

de outros testes classicos na literatura de cointegracao.

Palavras-chave: Cointegracao Fracionéaria, Dominio da Frequéncia, Estimador

Semiparamétrico, Determinante da Matriz de Densidade Espectral.



Abstract

This thesis proposes to study the fractional cointegration in the frequency do-
main. Here is investigated the restrictions that the absence or the presence of
cointegration imposes on the determinant of the spectral density matrix of a
vector of bivariate series, integrated of order 1, when evaluated at the first differ-
ence. The errors of the cointegration relationship are allowed to be fractionally
integrated. In this study it is shown that the determinant of the spectral den-
sity matrix is a power function of the parameter that measures reduction of the
order of integration of the error series (denoted here by b) for a set of Fourier
frequencies close to the origin. From this, two proposals for the estimation of the
cointegrating parameter b are suggested. Tests under the null hypothesis of non-
cointegration are derived from these estimators and their asymptotic properties
are discussed. A finite sample investigation was conducted in order to evaluate
the empirical performance of the estimators and tests by calculating the bias, the
mean square error, the significance levels and the power. The results suggest that
tests have empirical significance levels close to nominal levels. Furthermore, the
power of the tests shows a similar performance compared with the performance

of other classical tests in cointegration literature.

Keywords: Fractional cointegration; Determinant of spectral density matrix,

Semiparametric estimator.
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Capitulo 1

Introducao

O objetivo deste trabalho é estudar cointegracao fracionéaria sob diferentes con-
textos e propor métodos de estimacao dos parametros de interesse e testes de
nao coitegracao baseados no dominio da frequéncia. O conceito de cointegracao,
introduzido por Granger| (1981), tornou-se uma das técnicas mais populares en-
tre os econometristas uma vez que permite verificar se uma combinagao linear de
séries nao estaciondrias, integradas de mesma ordem, produz erros cuja ordem

de integracao é reduzida.

Neste estudo, investigam-se as restricoes que a auséncia ou nao de cointegra-
¢cao impoe sobre o determinante da matriz de densidade espectral de um vetor de
séries. Para a pesquisa proposta sao considerados vetores bivariados e integrados
de ordem 1 e avaliados na primeira diferenca com os erros da relacao de cointe-
gracao fracionalmente integrados. O ponto fundamental sob o qual este trabalho
se baseia é o fato de que o determinante da matriz de densidade espectral é uma
funcao poténcia do parametro que reduz a ordem de integracao do erro, denotado

por b, para um conjunto de frequéncias de Fourier proximas da origem.



Nesse contexto, no Capitulo 2 é apresentado o artigo Tests for non-cointegration
based on the frequency domain que é a parte central desta pesquisa. Com base
na teoria do dominio da frequéncia, as propriedades mateméticas e estatisticas
dos processos cointegrados sao discutidas. Em adicao, duas propostas para a
estimacao do parametro de cointegragao b sao sugeridas: a primeira, baseada em
Geweke and Porter-Hudak| (1983), propoe uma regressao do logaritmo do deter-
minante da matriz espectral do processo bivariado em estudo. Como segunda
proposta, sugere-se um estimador semi-paramétrico do determinante médio ba-

seado na proposta de |Robinson| (1994)).

O artigo também propoe testes sob a hipotese nula de nao cointegragao, o
quais sao derivados a partir dos estimadores sugeridos e as propriedades assinto-
ticas desses testes sao derivadas. Estudos com amostras finitas foram realizados
com o objetivo de avaliar, empiricamente, o desempenho dos estimadores e dos
testes propostos por meio do calculo do vicio ,do erro quadratico médio, dos ni-
veis de significancia e do poder. Os resultados do poder dos testes evidenciaram
um desempenho similar comparado com outros testes classicos na literatura de

cointegragao discutidos em Dittmann| (2000)).

A avaliacao empirica extende-se por meio de comparacao com a metodologia
apresentada em |Velasco| (2003). Esse autor sugere um método alternativo para
estimagao do parametro b. Vale ressaltar que [Velasco| (2003)) apresenta, dife-
rentemente do estudo proposto, as propriedades assintoticas do estimador sob a
hipotese de cointegracdo. Muito embora o estimador sugerido em [Velasco| (2003)
permita que a ordem de integragao do vetor seja superior a 1, os resultados das
simulagbes mostram que o método de |Velasco (2003) nao é robusto a diferentes

parametrizacoes do vetor cointegracao, denotado aqui por (3, ao passo que as



propostas sugeridas nesta tese mostraram-se robustas a variacoes em (3.

Com o objetivo de ilustrar a aplicacao dos testes propostos, o artigo apresenta
andlise de séries reais. Nesse contexto, a hipotese de nao cointegracao é testada
entre as séries do indice Dow Jones da bolsa de valores de Nova lorque e o indice
Financial Times Stock Exchange 100 da bolsa de Londres. Para tal interesse,
foram coletadas observagoes mensais compreendidas entre janeiro de 1985 e maio
de 2014.

O terceiro capitulo sugere a utilizacao de periodogramas robustos nos teste
quando as séries possuem outliers. O comportamento dos testes robustos ¢ veri-
ficado por meio de ensaios empiricos. Por fim, o Capitulo 4 conclui o trabalho

com as sugestoes de pesquisas futuras.



Capitulo 2

Tests for non-cointegration based

on the frequency domain

Igor Viveiros Melo Souza®, Valderio Anselmo Reisen’, Glaura da
Conceicao Franco®
*DECEG, UFOP and Departamento de Estatistica, UFMG
bDepartamento de Fstatistica, UFES and PPGEA, UFES

¢Departamento de Estatistica, UFMG

Abstract The aim of this paper is to propose methods to test the null hy-
pothesis of non-cointegration in bivariate series based on the determinant of the
spectral density matrix for the frequencies close to the origin. Two different sta-
tistics are proposed: the first one is based on a regression of logged determinant
on a set of logged Fourier frequencies and the second statistic is the semipara-
metric averaged determinant estimator. In the study, series are assumed to be
I(1) and the order of integration of the error series is I(1 —b), b € [0, 1], that is,

the parameter b determines the reduction in the order of integration of the error
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series. Besides, the determinant of the spectral density matrix for the first diffe-
rence series is a power function of b. An advantage of the methods proposed here
over the standard methods is that they allow to know the order of integration of
the error series without estimating a regression equation. Methods discussed here
possess correct size and good power for moderate sample sizes when compared
with other proposals.

Keywords: Fractional cointegration; Determinant of spectral density matrix,

Semiparametric estimator

2.1 Introduction

To study the relationship among economic variables, the concept of cointegra-
tion, introduced by Granger (1981)), has been widely employed, mainly due to the
spurious regression problem. The basic idea of cointegration consists in the fact
that a h x 1 vector series X¢, t = 1,2, ..., where each component is non-stationary,
can produce some linear combination of its coordinates that has a lower order
of integration. After the seminal work of Granger| (1981), several studies about
this topic have been developed. In the classic context, the most used tests for
cointegration are the [Engle and Granger| (1987) test (EG), the Phillips and Ou-
liaris| (1988)) test and the Johansen (1991) procedure. Besides, tests to verify the
presence of a unit root are necessary to use appropriate procedures for modeling
the data.

Despite its widespread use, the classical set up of cointegration is lately being
considered quite restrictive for many real problems. As an alternative, fractio-

nal cointegration has emerged as a more adequate methodology and examples



to real problems can be seen in (Cheung and Lai (1993), Baillie and Bollerslev
(1994), Dittmann (2001), McHale and Peel (2010) and |Cuestas et al. (2014)).
Different approaches have been implemented in the estimation and construction
of hypothesis tests concerning fractional processes. See, for example, Robinson
(1994), Robinson and Marinucci (2001), Marinucci and Robinson| (2001)), Robin-
son and Yajima (2002) and |Velasco| (2003)).

The first step in cointegration analysis is to verify the order of integration of
series X4, t =1,2,...,, 1 = 1,..., h, that composes the vector X;. A series X, is
said integrated of order d, d € R, denoted by X;; ~ I(d), if d is the minimum
number of differences required to obtain a process that admits an Autoregressive
Moving Average representation (ARMA). In this context, parameter d measures
the memory of the series. Using the ARMA representation, series X, can be

written as:

Xy = (1—B) %, (2.1.1)

where e;; = 0,(B)¢, !

" (B)u;+ with u;; being a white noise process with zero mean

2

and constant variance o,

0,(B) and ¢,(B) are polynomials in B with order ¢
and p, respectively, with all roots outside of the unit circle (see Hosking (1981))).
B is the backshift operator, that is, B"X;; = X;;,_, V 7 € N. In this case, the
series X, is said to be an Autoregressive Fractionally Integrated Moving Average
process, denoted by ARFIMA (p,d,q). Different values of d attach different
properties to the series X;;. A process with d < —0.5 is stationary but not

invertible. When d € (—0.5,0.5), X;; is both stationary and invertible. When

d > 0.5 the process is non-stationary although for d € [0.5, 1) it is mean-reverting

6



in the sense that innovations do not have long-run impact on the values of the
process. For values of d > 1, the mean-reversion property is no longer valid (for
details see |Cheung and Lai (1993)).

If X, is a stationary process, it has a spectral density functionﬂ, fx(X), which

can be written as:

Fx(N) = f)[1—e 7 (2.1.2)

where f.(\) is the spectral density of a stationary ARMA process e; with \ €
[0,27) and d € R. When the series X;; is non-stationary, i.e., d > 0.5, the
function defined in Equation is usually denoted pseudo-spectral density
(see, for example, Velasco| (2003))).

A general definition of fractional cointegration was given by [Robinson and
Marinucci| (1998)), allowing a different order of integration for X, ,, that is, X;; ~
I(d;), d; > 0, V 1. Therefore, the fractional cointegration for a h x 1 vector X is

defined as follows:

Definition 1. Let Xy, t = 1,2, ..., be a h x 1 vector series whose i-th element
Xit ~ I(d;),d; > 0,0 =1,...;h. X; is called fractionally cointegrated, denoted
by Xy ~ FCI(dy,...,dy,d.), if there exists a h x 1 vector 3 # 0 such that e, =

B'X, ~ I(d.), where 0 < d. < min; <;<p, d;.

The above definition is valid if and only if d; = d; for some ¢ # j, 4,5 = 1,..., h.
The vector 3 is called cointegration vector. In the case that d; = ... = d, = d, it
is usual to write X; ~ CI(d,b) where b = d — d.. When b = 0 the vector X, is

non-cointegrated. In this sense, parameter b measures the reduction in the order

!The spectral density of an stationary process X, is the Fourier transform of the autocova-
0 .
riance function, yx (1) = E{(Xi4r — ux) (X; — px)}, that is, fx(A) = &= > yx(1)e'™.

T=—00



of integration of the error series &;.

To test the null hypothesis of fractional non-cointegration, a general approach
is to calculate the order of integration of the residual series &, = BTXt, after
estimating vector 3 (see Dittmann| (2000))).

Various estimators of d. can be used in hypothesis tests for fractionally cointe-
grated processes (see, for example, Dittmann| (2000) and Santander et al.[ (2003))).
Another approach can be found in Velasco| (2003) who proposed a method to es-
timate and test the parameter b under the null hypothesis of cointegration.

Thus, the main objectives of this work are to propose new methods for es-
timating the parameter b and, also, a test of non-cointegration based on the
determinant of the spectral density matrix of the vector (AX;,;, AXsy;), where
A is the first difference operator, that is, A = (1 — B). Here, special attention
is paid to the case where d = 1, although the procedures can also be adapted
to other cases such as d # 1. In this situation an appropriate estimator of d is
required.

Some theoretical results are established for the proposed methods and an
empirical Monte Carlo study is conduct to evaluate their performance for small
sample sizes. In addition, the classical cointegration methods are also considered
in empirical studies for comparison purposes.

The paper is structured as follows. In Section 2 some properties of the de-
terminant of the spectral density matrix for cointegrated and non-cointegrated
series in the first difference are analysed. Section 3 presents the log determinant
regression estimator. In addition, the averaged determinant estimator and its
modification are discussed. A Monte Carlo study to analyse the performance of

proposals suggested here in terms of bias, size and power is presented in Section



4. This section also compares methods proposed here with residual based tests
presented in Dittmann| (2000) and to the Log Coherency Regression method in
Velasco| (2003). Section 5 shows an application of the proposed methodologies to

a real time series and Section 6 concludes the work.

2.2 The determinant of the spectral density ma-
trix for a bivariate series

This section presents the properties of the determinant of the spectral density
matrix for the vector (AX; ;, AX5;) where both components are (1) and satisfies
the linear relationship X, = Xs, + ¢ for some 8 # 0. The error term ¢, is
assumed to be I(1 —0b), with 0 < b < 1, that is, the order of integration can take
noninteger values.

If (X1, Xo4) is cointegrated, i.e., b € (0, 1], than the determinant of the spec-
tral density matrix of (AX;, AXy;) is a power function of b. Let the observable

bivariate time series (X; ., Xa+) be formed by the following system:

X1 = BT +wie

Xoy = BT} + woy

(2.2.1)

for t = 1,2,..., 1 # 0 and Py # 0. The series T; is a common unobservable

stochastic trend such that:

T,=(1—-B) ' (2.2.2)

and the innovations 7, are a stationary ARMA process with zero mean such that

9



> Jm(7)] < oo where v,(7) is the autocovariance of order 7. The pair of

T=—00

innovations (w4, wa;) follows the processes:

wlvt = (1 — B)_(l_bl) €1¢

)

- (2.2.3)
wy, = (1 — B)i( ) €24

where b; € [0,1] and by € [0, 1]. The vector (e; 4, e2,) follows a zero mean ARMA

i Ve, (T) 0

process with covariance matrix| ¥ = [ 7> o , such that
0 2 VealT)
7 Ve (7)) <00, > |7e,(7)| < 00 and it is uncorrelated with 7;. The system
described in Equation [2.2.1] can be rewritten as follows:
Xl,t = 6X2,t + & (224)

where 5= (1/B2, 51 # 0, B2 # 0 and ¢, = wy; — (B1/F2) wa, is a non-observable

error term such that e, ~ I(1 — b) with b = min (by, by).

Following Definition [1} the vector (X, Xs,) will be non-cointegrated if and
only if b = 0. Note that in Equation the input series Xy, and error term &,
are correlated. To impose orthogonality between Xo,; and ¢, it is necessary that

032 = 0 which implies that Xy; = T;. The spectral density matrix of the vector

2Without loss of generality, 3 is assumed to be diagonal in order to avoid the cross spectrum
terms between e; ; and ez ; and to make the calculations easier

10



(AX14+, AXs,) can be written as (see Priestley| (1981) p.658-659):

S 1 E{AXl,tJrTAXLt} E{AXl,t—i-TAXZt} _ix
Z e IAT

27
T E{AXy; - AX1:} E{AXy; ,AXo,}

fax,(A)  faxiaxa (M)
faxoax,(A)  fax,(A)

(2.2.5)

where fax,(A) and fax,(A) are the spectral densities of AX;; and AXyy, res-
pectively and fax,ax,(A) and fax,ax, (A) are the cross-spectrum between AXj
and AXy,. The matrix F(\) is Hermitian which means that fax,ax,(A) =

fax,ax, (A), where the over line means the complex conjugate.

Using the standard spectral properties of multivariate time series, F(\) can

be rewritten as (see |Priestley| (1981)):

2 _ —in2h
F()) = Bifa(AN) + 1 — e 7 fe, (N) B1B2fn(N) . (22.6)

By f(N) B3 fa(N) + 11— e £, (V)

The determinant of matrix F(\) is:

D) = [1 = e[ B2 fo AV o (N) + 1= e B2 £, (V) () +

11— e PO ). (2.2.7)

Assuming without loss of generality that b; < by, which makes b = by, and
using the fact that,

|1 — e’”‘|2b* =(2—2cos\)"" |

11



and:
. (2—=2cos\)”
lim ————— =1
Pt A27 ’

which means that for b* € R, [1 — e " = O(A%"), the determinant D()) can

be rewritten as:

D) =1 - e“\%%(}’(o) + O(N®2) + O(NHbHb2)y, (2.2.8)

where G(A) is a bounded function due to the stationarity of the processes ey,
ez and 7, such that:
G\

8 Go)

From this, the determinant D()\) can be computed as:

20 G(A) N
D(A\) ~ |1 — e ™ WG(O) as A — 0%, (2.2.9)

2

where the symbol 7 ~ 7 means that ratio of left and right-hand sides tends to a
constant 0 < C' < oo as A — 07. From the Equation D()) depends on the
reduction of the order of integration b imposed by cointegration. Similar results
are also described by Nielsen (2004). Therefore, if (X, Xs,) is cointegrated,
that is, 0 < b <1, D(A\) = 0 as A — 0". Tt means that F()) is a matrix with
incomplete rank at A = 0 (see Phillips and Ouliaris| (1988))). In the case of b = 0,
that is, (X4, Xo4) is non-cointegrated, D(A) — C' as A — 07 and F(\) has full

rank at A = 0.

Therefore, new methods to estimate parameter b and test the null hypothesis

of non-cointegration are proposed by analysing the slope of the function D()) in

12



a neighborhood of zero frequency.

2.3 Estimating b

Standard estimation methods for the memory parameter d, well discussed in
the literature of long memory processes, can be used as alternative procedures
to obtain estimates of b. These procedures are addressed here using the fact
that D(A\) ~ O(A?). The first proposal is similar to the approach of |Geweke
and Porter-Hudak (1983), where the logged periodogram is regressed on logged
Fourier frequencies. The second one is based on Robinson| (1994) semiparametric
averaged periodogram estimator of d, where a logged ratio of the periodogram is

evaluated in a neighborhood of zero frequency.

2.3.1 The logged determinant regression

Similar to the estimator of d proposed by Geweke and Porter-Hudak| (1983)
(GPH), an estimate of b can be computed from an approximated regression equa-
tion of In D(A) ~ 2In |1 — e~*| when A — 0". By taking the log in the Equation
yields:

In D(A) ~ InG(0) + ln% +bIn|l — e_i’\|2 as A — 0", (2.3.1)

For a pair of series (AX;;, AXy;) with a sample of size n, ie, t = 1,...,n ,
the first step in order to implement the above regression model is to estimate the

spectral density matrix, F(\), in Let \; = 2nj/n, j = 1,1+ (2r+1),l +

13



2(2r+1),....,m—(2r+1),m, where r,l € N*, with » < < m and m < n. Hence,

the estimate of F()\;) is given by

jtr tr
. 1 Z In,AXl ()\v) Z In,AXlAXQ ()\v)
EN) === | i i o (232)
(2T * 1) Z ITL,AXQAXl ()\v) Z ]n,AXg (/\v)
v=j—r v=j—r

where each diagonal term of IAT‘T()\]-) is the average of 2r+1 distinct periodograms

centered at frequency j given by:

2

Inax,(Ag) : (2.3.3)

n
E XZ tefi)\jt
t=1

for i = 1,2. The off-diagonal terms of ]?‘r()\j) are also an average of 2r+1 distinct

1
2
cross-periodograms centered at frequency j that can be computed by:

Inax,ax,(Aj) = (Z AX, et Z AXp,teth> /2mn (2.3.4)
=1 =1

where p,s = 1,2, p # s. The natural estimate of D(};) in Equation is the
determinant of IAT‘T()\]-) denoted here by lA)r()\j). Equation 9.5.12 from Priestley
(1981), p.697, states that cov [In,AXslAXpl()‘j)7In,AX52AXp2(/\k)] — 0 as n — oo,
where s1,p1,52,p2 = 1,2, and \; = 2mj/n, Ay = 2wk/n, j,k = 1,...,n with
j # k. Since the quantities in ]?‘r()\j) are calculated with non-overlapping Fourier
frequencies, they satisfy the conditions presented by Priestley (1981) in order
to be asymptotically uncorrelated and, as a result, cov[D(};), D(A\;)] — 0 as
n — oo. If the process (AX;+, AXy) is Gaussian, then cov[D(A;), D(Ag)] =0
vn.
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Using the fact that In [%"&7))] —1In lA)r(/\j) = —1In D()\;) and replacing D(\;)

by the approximation in Equation the following regression equation is ob-

tained:

In ﬁr()\j) =InG(0)+1n Cé(()(\)j)) +c(r) +bln |l — e |2 + {ln [llj)r(()f;j))] - c(r)}

(2.3.5)

where ¢(r) = E {ln [%} }

Therefore, the ordinary least squares estimator of b, I;LDR, is:

m -1y

~ ~ 92 ~ ~

bLpr = (Z Z; ) > Zi(nD,(\y)), (2.3.6)
j=l j=l

where Z; = In(2 —2cos)\;) and Z; = Z; — Z, Z is the mean of Z,;. In order

to obtain some asymptotic results of l;LDR, under the null hypothesis of non-

cointegration, the following assumptions are introduced:

Assumption 1. The vector of innovations (AX; ., AXay) follows a Gaussian

white noise process with zero mean and covariance matriz 2.

Assumption 2. Let m = g(n) such that @ + ﬁ + % — 0 asn — oo.
Remark 1. Under Assumption |1}, the spectral density of (AX1:, AXoy), F(N;),
is constant across different values of \;. In other words, the value of F(X;) is
independent of j, j = 1,...,m, and, therefore, D(X\;) = A, where A is a positive
constant. Moreover, if Assumption[d] holds, than the system described by Equation
15 necessarily non-cointegrated, that is, b = by = by = 0.

Following |Goodman| (1963) and under Assumption [I} the distribution of the

~

quantity = In [4 (2r +1)° DT()\j)/A)] has the same properties of In(x¢,, 2 X{4)»

15



that is, 7 < ln(XaT +2)X%47‘)) where X%M 49y and X%47~) are chi-squared random va-
riables with (4r + 2) and 4r degrees of freedom, respectively. The symbol £
means equality in distribution. In addition, since the vector (AXi4, Xo;) is a

white noise, G(\) in Equation is constant, that is, G(\) = G(0).

Proposition 1. Let the bivariate time series (Xi4, Xoy) satisfying the Equation
2.2, If Assumptions[]] and |3 hold, then:

3.V [Z;LDR] — 0 as m — oo,

where ¥ (2) is the Polygamma function of order 1, that is, ¥ (z) = £ 1;21;(,2)

Assumption [I]is quite strong but necessary to understand the behavior of the
statistic bypr. As pointed out, under the assumption of non-cointegration and
for a fixed m and r, the distribution of ELDR will be the same of a weighted sum
of {W;}"", independent random variables where each 1V L ln(XaT +2)X(24r)) and
i Zj2>. Once m — oo the following proposition can be
j=l

the weights are Z]/(

stated:

Proposition 2. Let Assumptions[] and[9 hold. Then, for a fized positive integer

r

—1/2. d

\% [BLDR} bior % N (0,1)
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as m — 0o, where I;LDR and V [IA)LDR} are given by Equations|2.3.6) and |.2.7,

respectively.

The proof of Propositions [I] and [ can be viewed in Appendixes [2] and [.3]
respectively. Assumption [l|can be relaxed allowing the terms D();) and In G(),)
to vary across different frequencies. In that case, the estimator Z;LDR is still
consistent since for sufficiently close frequencies A\;, A, j # k, D()\;) = D(\;) as

n — oo and In G(A;) = InG(0) as m — oo.

2.3.2 The Averaged Determinant

Based on the semiparametric averaged periodogram estimator of d proposed by
Robinson, (1994)), an alternative to estimate b can be computed due to the fact
that the D()) in Equation is a regularly varying function of index 2b, that
is: Pl

= q”, (2.3.7)

lim

A—0t D()\)

where ¢ is a positive constant. Based on Equation [2.3.7]

D
b= (2lng) ' In (2.3.8)

The estimate of b, say BAD, is computed by replacing D(-) by its estimate and

3Following the definition given by Bingham et al.| (1987), a measurable function H :
[a*,00) — (0,00), Va* € R, is said to be regularly varying of index ¢, ¢ € R, if H satis-
fies:
lim H(ay)

9
= Yo > 0.
S ) o’ Ya

In the present case, let y = 1/A. Thus, for a positive ¢:

D(g\) _ . Hlay) _ o

.
N0+ D(X) Yoo H(y)
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this is discussed as follows. For a sample of (AX;,, AXy,), t =1,...,n, let now

the estimate of F(};), j =1, ..., m, be given by:

F0,) = Inxiax,(A)  Iaxiax,(Ag) | (2.3.9)

Inxonx; () Iax,axs(Ng)

The estimate of D(A) and D(¢)\) are then obtained as follows:

m

S 7

Jj=1

m

> Z(aNy)

J=1

and  D(q\n) = . (2.3.10)

where ||A]| denotes the determinant of the matrix A and m satisfies Assumption

Therefore, D(gAn) — D(0) and D(),,) — D(0). The parameter b is estimated

by:
~ _1, D(g\n)
bap = (2Ing) ' In =212 2.3.11
ap = (21ng) Bn) ( )

The statistic in [2.3.11| will be called the Average Determinant (AD) estima-
tor. Under Assumption (1} that is, (AX;;, AXs,) follows a Gaussian white noise

process, /b\AD can be rewritten as:
Dap = {m [ﬁ(qu)/A] ~In [ﬁ(Am)/A} } (2lng)”". (2.3.12)

Since J; is the Fourier frequency, the set of variables ﬁ)\j) are independently
distributed and each is asymptotically distributed as a 2 x 2 complex Whishart
matrix, that is, <§()\j) ~ Wy(1,£f()\)) (See Brillinger| (1981) pp. 305).

In the case where ¢ is not a positive integer number, the quantity 27jq/n is no

longer a Fourier frequency and, in order to guarantee asymptotic independence of

18
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Z(q)j), the frequencies \; should be chosen such that A\; and A, j. k =1,....,m,
j # k, are spaced sufficiently apart. In particular, |\; £ Agz| > 27/n, which is
equivalent to [j £ k| > 1/q (see Priestley| (1981), pp. 405). This condition is
easily achieved, for example, if ¢ € (0.5,1) and [j £+ k| > 2, that is, j and k are
chosen from a set of odd or even numbers.

Note that the asymptotical independence between ﬁ(q)\) and lA)(/\) is not
always guaranteed since for some set of frequencies (gA;, A), [g\; £ A\x| < 27/n.
In order to solve this problem the frequencies can be trimmed out, although this
can lead to very poor estimates in practical situations, as the estimates will be
calculated with a reduced number of frequencies.

Under Assumptions |l|and [2} bap is an unbiased estimator of b and consistent.

This can be summarized in the following proposition:

Proposition 3. Let the bivariate time series (X1, Xoy) satisfying the Equation
12.2.4 If Assumptions[1] and[g hold, then:

b
<
—

(bl

an] = (EOm = 1) + ¢ (m) (1 = p) / {2 (Ing)*};

3. V[ZA)AD}—)Oasm%oo,

where p is the correlation coefficient between D(gA) and D(A) which has no closed
form if no frequencies are trimmed out. The proof of Proposition [3|is in Appendix
!

Corollary 1 of |Cai et al| (2013) shows that in (DOw)/A)3/[m/2] 4

— N (0,1).
2/4/m/2] (0.1)

Based on this, the above estimator can be written as a sum of two asympto-
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tic correlated Gaussian processes. Then, heuristically, it should converge to a

Gaussian random variable.

As an alternative to AD estimator,one should consider all frequencies in the

D(gAn)
m)

alternative method, denoted by Modified Averaged Determinant (MAD), is dis-

denominator of which has variance reduction compared with ISAD. This
cussed now. In this case, the numerator will take into account [m/2] distinct
frequencies while the denominator will take into account [m] distinct frequencies.
Let m; and ms be the number of frequencies included in the numerator and de-
nominator, respectively. Using Equation in Appendix [.2] one can see that,

under the hypothesis of non-cointegration,

E [ZA)AD} = 2(lnmg —Inm;y) + w(o)(ml) + w(o)(ml —-1)— w(o)(mg) — O (mg — 1),
(2.3.13)

_ —dlndl;(z), Since b4p will no longer

where 1(9)(2) is the digamma function: 1 (z)
be centered at b = 0, a bias correction must be considered. In this sense, the

MAD estimator is defined by:

In D@hm))
N D A'm
bvap = #j) — [2(Inmy — Inmy) + (O (my) + 0O (my — 1))

— (@ (ma) + ¢V (mz —1))}/(2Ing). (2.3.14)
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The variance of ZMAD will be:

V {Ban} = 6O = 1) + 90 (m)] + [0 (ms — 1) + 6 (ma)] -
20/ (mima) |/ {4 (ng)’}, (23.15)

where ¥* (my,mg) = [@D(l)(ml —1)+ ¢(1)(m1)] [¢(1)(m2 —1)+ Wl)(mz)}- Note

that V {EAD} is a particular case of V {BMAD} when my = ma.

2.4 Monte Carlo Study

Here, the methods discussed in the previous sections are analyzed and compared
for finite sample sizes. The performance of the methods is based on the empirical
mean of the bias, standard deviation (sd), Mean Squared Error (MSE), size
and power. In addition, the standard methods for non-cointegration tests are
also considered for comparison purpose. The finite sample size investigation is
divided in two parts. The first presents the empirical performance of the tests
under the null hypothesis of non-cointegration for § = 1.0 in Equation [2.2.4]
and the second part discusses robustness properties of the proposed tests across

different values of § with a comparison to the one given in [Velasco (2003)).

2.4.1 Empirical results for testing non-cointegration

Let the vector X4, Xo4, t = 1,...,n, generated by the following structure

Xip=Xoy+et
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where the vector (Xs4,¢e:) was generated from

(1- B) 0 Xo, €1 0y (1 0
0 (1-=-B""| e eas o/ \o 1

The sample sizes considered were n = 100, 500, 1000 and the results are ba-
sed on 3500 replications. In all cases, the 300 first observations were discar-
ded to avoid any influence of the initial data. The parameter b assumed values
{0,0.1,0.2,0.5,0.7, 1} and the bandwidth m = n®". For testing Hy : b = 0 against
the alternative Hy : b > 0, the nominal size was fixed at 5% and ¢ = {0.6,0.8}
were considered for /b\AD and /b\M AD, respectively. For the log determinant regres-
sion method, that is, the (ELDR) estimator, 7 was equal to 1, which means that

3 different frequencies were included in the calculation of 13()\]-) (see Equation

2.3.2).

Since the correlation between lA?()\m) and lA?(q/\m) does not have a closed
form, 2000 replications of these quantities were computed in order to obtain the
estimates of the variances of EAD and /b\MAD. From the empirical results, the
sample correlations are very close for the above sample sizes across the values of
g = 0.6,0.65,...,0.90,0.95. Some of the results are displayed in Table Note
that ¢ was chosen not to belong to € (0.0,0.5) to avoid loss of information from
the peridogram function, that is, the estimators would have less frequencies in the

calculation of the determinants of these estimators compared with ¢ € (0.5, 1.0).

Tables 2.2 and 2.3 display results for the AD and MAD methods, respectively.
Critical values for the "t-like"statistic, that is, the standardized statistic, were

calculated from a standard Gaussian distribution. o, stands for the "asympto-
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tic"standard deviations and they were calculated taking into account the mean
values of correlations presented in Table 2.1}

In general, the AD and MAD procedures present quite similar results regar-
ding the bias. Although the latter is oversized, it has smaller MSE and higher
power than AD, which presents empirical size always close to 5%.

Estimated values of b are well centered around the true value in all cases
considered. However, the bias increases as b becomes larger and close to one. In
addition, it seems that the bias does not depend on the ¢ value.

The power of the MAD procedure increases significantly since more frequen-
cies are introduced in the term ﬁ(Am) In addition, the power decreases signifi-
cantly when a higher value of ¢ is chosen. This is an expected result, since the
variance depends positively on g.

As will be discussed in Section 4.2, an advantage of the AD and MAD tests

over the one proposed in [Velasco| (2003)) is that they are robust against 8 values.

Tabela 2.1: Simulated values for correlations used in the asymptotic variance
of AD and MAD

bap byrap
n 150 300 500 Mean 150 300 500 Mean

0.60 | 0.4701 0.4611 0.4583 0.4631 | 0.6733 0.6749 0.6692 0.6725
0.65 | 0.4629 0.4641 0.4401 0.4557 | 0.6739 0.6455 0.6825 0.6673
0.70 | 0.4430 0.4895 0.4782 0.4702 | 0.6606 0.6802 0.6754 0.6721
0.75 | 0.4633 0.4671 0.4695 0.4666 | 0.6945 0.6692 0.6639 0.6759
0.80 | 0.4924 0.4643 0.4803 0.4790 | 0.6809 0.6640 0.6587 0.6678
0.85 | 0.4733 0.4784 0.4915 0.4811 | 0.6513 0.6813 0.6736 0.6687
0.90 | 0.4857 0.4558 0.4645 0.4686 | 0.6892 0.7083 0.6863 0.6946
0.95 | 0.4917 0.4628 0.4857 0.4801 | 0.6867 0.6912 0.6962 0.6914

Table shows the critical values for the LDR test using the three sample
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sizes: m = {100,500, 1000}. These values were used to compute the results given
in Table 2.5 which displays the performance of LDR method. In Table On
refers to exact standard deviation calculated by [.2.7]

Similar to the previous procedures, LDR method produced estimated values
of b that are centered around the true value in all cases, except for b = 1.

The empirical size for the LDR procedure is always close to the 5%. Based
on Figure the LDR statistic completely dominates the averaged determinant
statistics. Note that, the asymptotical behavior of LDR, AD and MAD, under
Hy, have not been not been established yet.

In addition to the better power perfomace, there are two advantages of LDR
over AD and MAD. First, the variance is known and it is easy to be calculated
and the second one is that the empirical distribution for small sample sizes can
be easily obtained.

Figure plots the "t¢-like"densities for all tests, AD, MAD and LDR and
the standard Gaussian density. For AD and MAD, the densities were computed
only for ¢ = 0.6, since this presented better power than ¢ = 0.8.

One can see that the empirical densities of AD are closer to the Normal density
curve than the MAD. As expected, the density of LDR statistic is very close to
the standard Gaussian density, even for n = 100.

Based on the previous discussions of the advantages of the LDR test over the
AD and MAD methods, the first method is now compared with the residual based
tests given in Dittmann| (2000). The tests are: GPH, Lagrange Multiplier (LM)]
Modified Rescaled Range (MRR)P| Phillips-Perron p-test (PP,), Phillips-Perron

4See [Lobato and Robinson| (1998) for details
®See Lo (1991) for details
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t-test (PP;) and Augmented Dickey-Fuller (ADF) [f]

In order to make the above comparison, the same experiments conducted by
Dittmann| (2000) were also used here to obtain the empirical size and power of
the LDR test and these are displayed in Table [2.6] which also includes the results
from Table A3 in Dittmann| (2000).

In general, it can be observed that LDR plays an intermediate role when
compared to other tests. When sizes are evaluated, that is, when the simulated
series are ARIMA(1,1,0) and ARIMA(0,1,1) models, LDR completely dominates
the frequency domain GPH and LM tests by presenting less oversized significance
levels. In the case of the time domain tests, LDR displayed better sizes than
PP, and PP, in most of the cases. The ADF and MRR tests show the best
size performance among the evaluated tests. However, they have less power
when n > 250 and when d is close to the null hypothesis of non-cointegration.
The remaining tests possess higher power in the majority of cases. The only
exceptions are the PP, and PP, tests that lose power when models are near to

the null hypothesis for sample sizes equal or greater than 250.

6See [Hamilton| (1994) for details of Phillips-Perron p-test, Phillips-Perron t-test and Aug-
mented Dickey-Fuller test
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Tabela 2.2: Estimates, size and power for the AD method at 5% significance level

q— 0.6 b=0 b—=0.1 b=0.2 b=0.5 b=0.7 b—1
n = 100 Mean 0.0177 0.1052 0.2086 0.4627 0.6373 0.9082
o, — 0.4116 Sd 0.4186 0.4228 0.4292 0.4732 0.4902 0.5558
MSE 0.1755 0.1788 0.1843 0.2253 0.2441 0.3173
Rejection  0.0540 0.0900 0.1374 0.3160 0.4611 0.6494
n = 500 Mean 0.0066 0.1073 0.1976 0.4918 0.6804 0.9581
o, = 0.2312 Sd 0.2384 0.2452 0.2485 0.2762 0.3034 0.3232
MSE 0.0569 0.0602 0.0617 0.0763 0.0924 0.1062
Rejection 0.0597 0.1351 0.2271 0.6474 0.8383 0.9646
n = 1000 Mean 0.0044 0.1056 0.2038 0.4987 0.6880 0.9661
o, = 0.181 Sd 0.1839 0.1875 0.1921 0.2162 0.2334 0.2504
MSE 0.0338 0.0352 0.0369 0.0467 0.0546 0.0638
Rejection 0.0520 0.1534 0.3111 0.8246 0.9583 0.9974
q— 038 b=0 b=0.1 b=0.2 b=0.5 b=0.7 b=1
n — 100 Mean 0.0446 0.1013 0.1999 0.4756 0.6551 0.8945
o, = 0.9512 Sd 0.9862 0.9750 1.0047 1.0977 1.1613 1.2288
MSE 0.9743 0.9504 1.0092 1.2052 1.3503 1.5206
Rejection  0.0626 0.0654 0.0857 0.1557 0.2111 0.2874
n = 500 Mean -0.0052 0.1043 0.2133 0.4949 0.6798 0.9738
o, = 0.5343 Sd 0.5389 0.5503 0.5690 0.6067 0.6526 0.7101
MSE 0.2903 0.3027 0.3239 0.3680 0.4262 0.5048
Rejection  0.0480 0.0791 0.1251 0.2637 0.3826 0.5491
n = 1000 Mean 0.0113 0.0976 0.2103 0.4940 0.6797 0.9790
o, = 0.4182 Sd 0.4255 0.4243 0.4392 0.4842 0.5057 0.5338
MSE 0.1811 0.1799 0.1929 0.2344 0.2560 0.2853
Rejection  0.0543 0.0860 0.1377 0.3500 0.4923 0.7146
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Tabela 2.3: Estimates, size and power for the MAD method at 5% significance level

q— 0.6 b=0 b=0.1 b=0.2 b=0.5 b=0.7 b=1
n — 100 Mean 0.0118 0.1133 0.2118 0.4732 0.6548 0.8929
o, = 0.2972 Sd 0.3088 0.3222 0.3328 0.3747 0.4035 0.4386
MSE 0.0955 0.1040 0.1109 0.1411 0.1648 0.2037
Rejection 0.0683 0.1277 0.1966 0.4786 0.6417 0.8200
n = 500 Mean 0.0093 0.1033 0.2030 0.4946 0.6758 0.9538
o, = 0.1669 Sd 0.1763 0.1795 0.1925 0.2148 0.2308 0.2619
MSE 0.0312 0.0322 0.0371 0.0462 0.0539 0.0707
Rejection 0.0723 0.1720 0.3463 0.8497 0.9591 0.9966
n = 1000 Mean 0.0033 0.1051 0.1988 0.4961 0.6875 0.9690
o, — 0.1307 Sd 0.1345 0.1419 0.1476 0.1726 0.1880 0.2042
MSE 0.0181 0.0201 0.0218 0.0298 0.0355 0.0426
Rejection 0.0609 0.2134 0.4540 0.9563 0.9954 1.0000
q—0.38 b=0 b=0.1 b=0.2 b=0.5 b=0.7 b=1
n = 100 Mean 0.0339 0.1329 0.2321 0.4738 0.6482 0.8963
o, = 0.6803 Sd 0.6901 0.7172 0.738 0.7927 0.8413 0.9111
MSE 0.4772 0.5153 0.5464 0.6289 0.7103 0.8407
Rejection 0.0671 0.0954 0.1174 0.1983 0.2766 0.3883
n = 500 Mean 0.0149 0.1236 0.2118 0.4859 0.6843 0.9584
o, = 0.3821 Sd 0.3911 0.4036 0.4214 0.4593 0.4923 0.5432
MSE 0.1532 0.1634 0.1777 0.2111 0.2425 0.2967
Rejection 0.0643 0.1063 0.1637 0.3589 0.5297 0.7160
n — 1000 Mean 0.0042 0.1042 0.1979 0.4952 0.6873 0.9595
o, = 0.2991 Sd 0.3093 0.3117 0.3261 0.3716 0.3876 0.4285
MSE 0.0957 0.0972 0.1063 0.1381 0.1504 0.1852
Rejection 0.0657 0.1117 0.1846 0.4911 0.6857 0.8631
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Tabela 2.4: Critical values for LDR ¢t — like statistic

Significance Level | 90% 95% 99%

n = 100 1.2804 1.6792 2.4980
n = 500 1.2845 1.6801 2.4494
n — 1000 1.2890 1.6796 2.4380

Tabela 2.5: Estimates, size and power for the LDR method at 5% significance level

b=0  b=0.1 b=0.2 b=0.5 b=0.7 b=1

n=100 mean 0.0018 0.1020 0.2104 0.4764 0.6487 0.8689
o, =0.2433 sd 0.2424 0.2401 0.2467 0.2505 0.2536 0.2736
mse 0.0588 0.0576 0.0610 0.0633 0.0669 0.0920
Rejection  0.0483 0.0991 0.2017 0.5951 0.8297 0.9571
n=>500 mean -0.0008 0.1056 0.1978 0.4830 0.6562 0.8545
o, =0.1134 sd 0.1134 0.1129 0.1141 0.1145 0.1205 0.1583
mse 0.0129 0.0128 0.0130 0.0134 0.0164 0.0462
Rejection  0.0531 0.2274 0.5169 0.9963 1.0000 1.0000
n=1000 mean 0.0023 0.1013 0.1994 0.4854 0.6639 0.8560
o, = 0.0859 sd 0.0879 0.0871 0.0847 0.0871 0.0970 0.1385
mse 0.0077 0.0076 0.0072 0.0078 0.0107 0.0399

Rejection 0.0571 0.3086 0.7397 1.0000 1.0000 1.0000
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Tabela 2.6: Size and power comparison at 5% significance level

Power

Size

I(d) processes with d =

ARIMA(1,1,0) with ¢ —

ARIMA(0,1,1) with 0 —

Sample Size Test 0.1 0.3 0.5 0.7 09 |-0474 -0412 -0.333 -0.231 -0.091 | 0.718 0.525 0.382 0.245 0.092
100 GPH 9893 97.05 84.02 45.15 11.11 | 10.15 10.53 10.12 8.56 6.85 | 86.37 46.98 2498 13.18 6.71
LM 99.89 99.25 9296 6092 13.35 | 16.8 1748 16.06 13.65 813 | 96.53 71.84 44.08 2243 8.68
MRR 15.32 26.15 30.82 24.19 9.58 2.2 3.16 4.27 5.33 5.87 534 598  6.08 6.6 5.78
PP, 100 100 96.26 52.57 11.22 | 23.85 20.06 14.7 10 6.54 | 89.32 51.25 2596 13.84 6.86
PP, 100 100 95.28 48.83 10.45 | 23.82 20.01 14.78 9.79 6.42 | 89.32 50.77 2539 13.17 6.68
ADF 98.33 93.44 70.88 36.33 9.46 4.73 5.82 6.72 6.83 5.73 | 41.85 1777 11.06 9.06 5.74
LDR 93.59 8247 60.53 3044 10.38 | 9.82 8.98 8.59 7.64 6.13 | 7294 36.53 19.88 10.96 6.46
250 GPH 9999 9999 99.78 85.07 18.63 | 1043 10.55 10.88 9.88 7.57 | 96.77 61.09 31.11 16.39 8.01
LM 100 100  99.96 944 25.25 | 14.83 15.14 1507 13.88 897 | 99.26 824 51.22 26.86 10.02
MRR 61.49 72.15 68.09 46.55 1391 | 2.73 3.32 4.51 5.21 6.1 883 546 585 6.04 575
PP, 100 100 9998 78.65 15.36 | 20.66 16.18 11.95 9.49 6.58 | 89.39 47.19 222 114 6.88
PP, 100 100 9994 7598 13.84 | 20.66 15.79 11.72 9.16 6.18 | 89.22 46.66 21.55 10.87 6.52
ADF 99.97 99.48 89.75 50.78 12.3 4.59 4.54 5.2 5.76 5.89 | 2396 9.89  7.32 6 5.93
LDR 999 99.36 93.28 58.81 15.06 | 8.67 8.16 7.93 7.1 5.84 | 8843 43.18 20.75 10.8 6.46
500 GPH 100 100 100 98.38 30.49 | 10.18  9.69 9.81 9.41 762 | 9398 688 3495 1764 8.55
LM 100 100 100 99.77 4143 | 13.6 13.04 13.8 12.98 10.2 | 99.62 86.5 55.26 28.7 11.21
MRR 95.61 97.82 9446 68.75 17.77 | 3.41 4.22 4.56 5.27 5.8 13.58 6.5 5.75 598  5.58
PP, 100 100 100 90.16 19.13 | 1795 13.96 10.21 7.73 5.75 | 87.16 4121 18.9 9.8 6.47
PP, 100 100 100 88.3 16.82 | 17.17 13.23 9.91 7.14 5.41 | 8.81 40.59 1815 932 6.22
ADF 100 99.97 97.81 65.72 14.45 | 4.44 4.75 5.02 4.64 5.03 |16.34 809 638 594 5.6
LDR 100 99.99 99.6 8256 21.1 7.56 7.64 7.34 6.91 5.67 | 9281 42.08 1871 10.32 6
1000 GPH 100 100 100  99.99 50.39 | 9.79 9.65 9.98 9.72 798 | 9891 75.47 38.43 1931 89
LM 100 100 100 100  66.16 13 12.78 13.2 1293 11.12 | 99.66 88.94 59.45 60.51 12.79
MRR 99.91 99.98 99.79 88.64 23.93 | 4.11 4.89 5.19 5.7 5.74 11692 6.82 6.07 6.11 5.88
PP, 100 100 100 96.29 24.24 | 15.12 11.23 8.97 7.32 6.03 | 84.51 35,51 17.93 847 6
PP, 100 100 100 9546 21.54 | 14.55 10.66 8.55 7 6.02 84 34.66 1421 829 596
ADF 100 100  99.76 79.21 17.95 | 5.05 4.79 4.56 4.85 543 | 1288 6.85 5.82  5.67 5.4
LDR 100 100 100 96.4 2995 | 7.29 7.03 6.01 6.43 5.9 94.71 39.67 16.69 9.38  5.98

Note: Values from GPH, LM, MRR, PP,, PP; and ADF are from Table A3, p. 638 by Dittmann|(2000).



Figura 2.1: Power of AD, MAD and LDR at 5% significance level
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2.4.2 Robustness to different values of cointegration decli-

vity () - A comparison with log coherence regression

This subsection discusses the robustness properties of LDR, AD, MAD and the
estimator given in Velasco| (2003)) over the declivity (5) values. [Velasco| (2003)
proposed a method to estimate parameter b and test the null of cointegration
based on a regression of logged squared coherence between the pair of series
(X14, Xa¢) on logged Fourier frequencies. This procedure exploits the fact that
near zero frequency the squared coherence for cointegrated series converges to 1.

The LCR method is built for a non differentiated vector (X, Xo;) where
Xt ~ I(d), i € {1,2}, with d € (0,1.5). In the context that the series are

non-stationary, the author suggests to use data tapering for controlling the peri-
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Figura 2.2: Empirical densities of standardized statistics for AD, MAD and
LDR
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Note: Solid lines are Gaussian density functions and dashed lines are the empirical densities.

odogram bias. He shows the consistency of his estimator when 0 < b < d, that is,
when the vector are cointegrated. When the vector (X, X5,) is non-stationary
its spectral density matrix, denoted by H (), becomes , as mentioned early, a

pseudo-spectral density matrix. H (\) is given by:

(14+0(X*)) as A — 0" (2.4.1)

for some constants |G| < 00,a,b € {x,e} where the matrix G = {Gy} is
Hermitian and nonsingular. The pseudo-spectral density for X;; and the cross

pseudo spectral density for X;; and Xy, can be written, respectively as:
fX1X1 ()\) = 52fX2X2 ()\) + fgg()\) + 26Ref5X2 ()\) ~ BQGI$)\_2d as \ — O+ (2.4.2)
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and

Ixoxs (N = BFxoxs(A) + fxpe(N) ~ BGrzA ™2 as X — 0T (2.4.3)

where Re(z) means the real part of a complex number z. The squared coherence

|k x, x,(A)|? between X, and X, can be written as:

2
’KJXIXQ ()\)|2 = 1 — fgs (A) + ’stg (A)‘

fX1X1 ()‘) fX1X1 (/\) fX2X2 ()‘) . (244)

Replacing the approximations in Equations [2.4.1] [2.4.2| and [2.4.3| into the above

expression and taking logs yield:
In(1—|kx,x,(\)|?) ~InGpy +2bIn X as A — 0F (2.4.5)

Where0<GH<ooandGH:ﬁgGﬁ[l—G‘f;—gi].

Using consistent estimates of |rx, x, (A)|>, the parameter b can be estimated
by regressing In (1 — |&x, x, ()\)|2) on logged values of frequencies A around the
origin. This estimator is denoted here by the log coherence regression (LCR).

Despite LCR differs from AD, MAD and LDR in terms of the null hypothesis,
the method also estimates the same parameter, b, which makes the comparison
meaningful.

Although LCR asymptotically does not depend on 3, this parameter can be
influential on small samples. Simulation results presented in this section show
that, in fact, the values of § can affect the estimated values for b. On the other
hand, the determinant based estimators, LDR, AD and MAD, are unaffected by
the choice of S.

To evaluate the robustness properties of the estimators over  values, a Monte
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Carlo experiment was conducted with C'I(1,1). Parameter [ varies in the range
{1,0.5,0.125,0.065}. The system described in Equation [2.2.1] was simulated with
innovations following a Gaussian white noise process with 072] =1, o7 =1,
o2, = 0 and 8, = 1 (which makes X5, = T; and cov (g, X2,) = 0). In all
replications the sample size was fixed at n = 256 in order to keep comparability

to the models simulated by Velasco (2003)[].

Bandwidth for LCR was fixed at m = 36 since this value has displayed the best
results, in terms of mean squared error, for most models considered in Velasco
(2003). For AD, MAD and LDR, the bandwidth was fixed at m = n%7, which
was the usual choice of the present work, while the parameter ¢ was set equal to
0.6 for AD and MAD. Table presents the mean of the estimates, the standard

deviation and the mean squared error.

As displayed in Table the LCR is not robust to different values of the
cointegration vector 5. The bias and mean squared errors of estimates increase
with decreasing 5. The AD and MAD seem to be the less biased estimators
and insensitive to variations in § while LDR, although biased, produced the best
performance in terms of mean squared error and is also insensitive to the changes
in the cointegration vector. These simulations illustrate that LCR is not a very

reliable estimator for small samples.

"In the LCR models simulated here a Zhurbenko data taper of order 2 was used as suggested
by the author. It means that the fast Fourier transform used to calculate the periodogram

t=n/2 ‘ Also,

were h; is the data taper such that hy =1 — e

n
assumes the form: | > h; X;e ™M

t=1
estimates of are using previously defined spectral estimates with uniform weights over 3
Fourier frequencies. See [Velasco| (2003) for details
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Tabela 2.7: Robustness properties of the methods to g variations

153 Statistic brcr bap by aD brLor
Mean 0.8399 0.9482 0.9719 0.8505
1 Sd 0.2195 0.4147 0.3253 0.1882

MSE 0.0738 0.1746 0.1066 0.0578
Mean 0.6718 0.9353 0.9655 0.8531

0.5 Sd 0.1991 0.4063 0.3287 0.1938
MSE 0.1474 0.1692 0.1092 0.0591

Mean 0.2190 0.9199 0.9722 0.8570

0.125 Sd 0.1550 0.4052 0.3286 0.1867

MSE 0.6341 0.1706 0.1087 0.0553
Mean 0.0814 0.9502 0.9705 0.8529
0.065 Sd 0.1256 0.4125 0.3298 0.1844
MSE 0.8596 0.1726 0.1096 0.0556

2.5 Application

The methodologies previously described were applied to monthly observations
of logged stock values for United States markets (Dow Jones Industrial Average
Index - DJ) and United Kingdom markets (Financial Times Stock Exchange 100
- FTSE). Data ranges from January 1985 to May 2014. Looking at Figure it
can be seen that stock values in US and UK markets seem to share some long-run

relationship.

Firstly, GPH was employed in both series to estimate d using two different
values of bandwidth n%® and n%7. For the DJ series the estimated values of d were
0.9281 (sd = 0.1942) and 0.9878 (sd = 0.0941) for n®° and n°7, respectively, while,
for the FTSE series, estimated values of d were 0.9490 (sd = 0.1941) and 1.0181
(sd = 0.0941) for n®® and n°7, respectively. These results were used to calculate
the t-like statistic for the GPH unit root test (see[Santander et al.[(2003)) in which
the null hypothesis is Hy : the series is 1(1) versus Hy : the series is I(d),d < 1.

In addtion, the ADF and PP tests were also implemented. From Table 8 it can
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be seen that these tests suggest that both series have a unit root.

The next step was to test the null of non-cointegration using LDR, AD, MAD
and also using GPH and EGF| The last two tests were performed on the residuals
of the regression equation for DJ and FTSE. Values for AD and MAD were
obtained using ¢ = 0.6. Estimated values for parameter b using LDR, AD, MAD
and GPH (which was obtained using 1 — dres, where Jres is the estimated d for
regression residuals) can be seen in Table Note that the EG test does not
estimate the parameter b.

The results in Table indicated that the series are not cointegrated, which
is in accordance with the most of the empirical evidence discussed in the lite-
rature, that is, most of the international stock prices analysed are not pairwise

cointegrated (see |Aloy et al.| (2013)) or Kanas (1998)).

2.6 Conclusion

The present work investigates the properties of the determinant of the spectral
density matrix close to the origin for bivariate cointegrated series and proposes
methods to test the null hypothesis of non-cointegration based on these proper-
ties.

The determinant of the spectral density matrix for the first difference series is
a power function of the parameter b, which determines the reduction in the order
of integration of the error series. Two different statistics were considered: the log
determinant regression and semiparametric averaged determinant estimator.

Monte Carlo simulations showed that the methods presented here possess, in

8Critical values for GPH test can be found in Santander et al. (2003). For EG test see
MacKinnon| (1991) while for AD and MAD asymptotic standard Gaussian values were used
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Tabela 2.8: Values of unit root test statistic and critical values

GPHA(n"%) GPHn"7) ADF PP

DJ 20.3702 2012907 22028 -1.8714

FTSE -0.2628 0.1923  1.5746 -2.0234

Critical Values -1.61 -1.58 195 -2.87
ritical Values

(0 = 10%) -1.16 -1.18 -1.62 =257

2 Critical values for GPH test can be found in [Santander et al.| (2003)
Tabela 2.9: Estimates for b and test statistic for non-cointegration
between DJ and F'TSE

LDR AD MAD GPH®  EG
Bandw1dth n0.5 n0.7 n0.5 n0.7 TLO'5 n0.7 n0.5 n0.7 _
b 2014 002 ] -045 030 |-024 014 | -0.14 003 | -
Standard Deviations] 0.29 0.13 | 0.51 0.27 | 0.36 0.19 | 0.19 0.09 -
t-like Statistic 2049 0.18 | -0.88 1.11 | -0.67 0.74 | -0.74 0.32 | -2.27
Critical Values 1.68 1.68 1.64 1.64 294 211 | -2.87
Gt A

ritica. alues

(o = 10%) 129 1.29 1.28 1.28 178  1.67 | -2.57

& In order to keep comparability with LDR, AD and MAD, critical values were adjusted
totest Hy: 1 —dpes =0 versus Hy : 1 —dyes >0
b Critical values for GPH test can be found in [Santander et al.| (2003)
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Figura 2.3: Logarithm of stock values, Dow Jones (solid) and FTSE 100 (dot-
ted)
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general, correct size. The log determinant regression showed good power for mo-
derate sample size. In addition, Monte Carlo simulations also showed that both
methods are insensitive to the choice of cointegration relationship (the S parame-
ter). Some properties of the above statistics under the null of non-cointegration
were discussed and the current research is investigating the asymptotic properties
under the alternative hypothesis as well as the extension of those proposals to
a higher dimension vector allowing more than one cointegration relationship. In
addition, a version of these tests which is robust to the presence of outliers is

being investigated.
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.1 Technical Lemmas

Before proving the propositions, one should consider the following Lemmas:

Lemma 1. (Hurvich and Beltrao (1994) pg. 301)
Let Z; =In (2 —2cos \)) and Zj =1 — Z,j=1,..,m, where Z is the mean of
Z;. Thus, Y, Z =m+ o(m).

]_
Lemma 2. Let Z; =In (2 —2cos \;) and Zj =Z7;—7,j=1,...,m, where Z is

the mean of Z;. Thus, Z; = O(Inm).

Demonstragao. Hurvich and Beltrao| (1994) state that Z; = Inj — L Inm!+o(1),

where the first term, Inj = O(Inm) Vj = 1,..., m. The following limit,

1
lim — Inm!
m—oo M

is an indeterminate form of the type 2. By the L’'Hospital’s rule, the previous

limit can be rewritten as: lim,, o w(o) (m+1). Equation 6.3.18 from Abramowitz
and Stegun| (1972), pg. 259, states that: () (2) ~ Inz— L

1
2z 1222 + 12024 25626 +.

as z — o0. As a result, (¥ (2) = O(In 2) and, consequently, Z; = O(lnm). O

Lemma 3. Let /™" (u) be the Polygamma function of order 1, that is, ™M (u) =

. Zlurz(u). Then, for z € N*, lim,_, ¢(1)(2) =0.

Demonstracao. Jeffrey and Zwillinger| (2007), pg.905, state that for any z € N*,
_ z—1
PV (2) = & — z L. Thus, lim, e M (2) = & — lim, o Y. 5. In addition,

k=1

= % as a result,

MIH

Jeffrey and Zwillinger| (2007)), pg.8, state that lim, . i

lim, . M (2) = 0.
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.2 Proof of Proposition

1. Under Assumption , the determinant D()\;) is constant across different
frequencies, that is, D();) = A, for all A\; € (0,2x|, where A is a positive
constant. In this case, for a fixed r, Goodman (1963) points out that
the distribution of the random variable 2; = In |4 (2r + 1) lA)T()\j)/A] is
the same of In(x7,, 12) X%4r)) where X%er 1) and X%4r) are chi-squared random
variables with (47 + 2) and 4r degrees of freedom, respectively. In addition,

the characteristic function of % is:

4L 2r +14+4t)I(2r + it)

¢o(?) T(2r + 1)L (2r) (:21)
Taking the first derivative of ¢4(t) evaluated at t = 0 yields:
dog(t
d)jt( >t:0 = (@O02r +1) + ¢ 9(2r) + In4)i. (:2.2)

Then, B[2)] = 602 + 1) + $O(2r) + Ind. Since 7; = In [220]

In [4(2r + 1)2}, one can see that:

D, (\))

E
A

In = O 2r + 1)+ ©(2r) — 2In (2r + 1). (.2.3)

Let ¢; = {ln [%} - c(r)}, where ¢(r) = E [ln [%H It is easy

to see that (; is a random variable such that E[(;] = 0. In addition, if

G\))

Assumption |1| holds, then term In el

in Equation [2.3.5[is equal to zero
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since G(\;) = G(0), VA;. Let a =InG(0) 4 ¢(r). It can be seen that:

Moreover, under Assumption b=0. Thus, E [IA)LDR} =0.

-1

. The variance V [bLDR} is equal to the variance of the term | 3. Z; Z Z(;.
!

j:
Under Assumption [1} the set of random variables (;, 7 = 1,...,m is 1nde—

pendent and identically distributed. Therefore, V [ZA)LDR} is:

<
T~

<l (.2.5)

2

!

v [I;LDR] =

NFE

J
l

<.
Il

where V [(] is the variance of (; for all j which is the same variance of
the random variable Z;. In turn, the variance of &; can be obtained from
the first and second derivatives of function ¢4 (t). The second derivative of

function in Equation at t =0 is:

d*¢o(t)
dt?

+O2r +1) (In16 + @ 2r + 1)) + W (2r) + P (2r + 1)] . (.2.6)

b0 = — [2 4+ 9@ 2r)" + 200 2r +1) (In4 + @ (2r 4 1))

From Equations and the variance of 2 is () (2r + 1) + M (2r).
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Replacing the quantity ¢(2r + 1) 4+ 4" (2r) in Equation yields:

P EECCET T R

mo~ 2
> 7
i=l

3. The proof of this part follows immediately from Lemma

.3 Proof of Proposition

Let the sequence of random variables U,,;, 7 < m form the following triangular

array:

(.3.1)

where the random variables in each row of are independent and for each m
and j,

and V {Uy,;} = o7,; such that o7, < co and

sh =Y on; =1 (.3.3)



Theorem 7.2.1 given in Chung (2001) states that, for a triangular array where the

conditions established by Equations|.3.2|and |.3.3| hold, the sum S,, = > Uy, S
j=1

N (0,1), as m — oc.
-1

m
o = 2
In order to prove Proposition |2} one can observe that term | > Z; Z Z,(,
j=l

under Assumptions [I] and 2] satisfies Equations [3.2] and [3.3] For all j < m, let

e
Uyj=Uy=-=Upj = 35 . (.3.4)

\/ S 727 (02 +1) + 0 (2r))

Since the random variables U,,; are the same across rows, the subscript m

can be dropped. By the definition of U; one can see directly that E{S,,} = 0.

By Lemmas 1| and ,V {U;} = mZ — < o0o. Therefore, V{5,,} =V { 3 Uj} =
=1

EZ
k=l

2
ZZj

Uk = 5 d
Zl IRy As a result, ¢(1)(grj+i)+qp(1>(2r)bLDR — N (0,1) as m — oc.
=t X %’

1

MS

zﬂ
Il

l

.4 Proof of Proposition

1. Under Assumption |1} D(X) = A, for all A € [0,27), where A is a positive

constant. Thus, D(\;) = D(gA\x) = A for all j,k = 1,...,m. Therefore:

E [BAD} - {E [m [f)(qu)/AH ~E [m [B(Am)/AH}(zlnq)—l. (4.1)

Since the terms D(gAn) and D(),,) use the same number of frequencies,

by Equation |.2.3, E [ln [ﬁ(q)\m)/AH = E [ln[ (A )/A” = O (m) +
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YO (m — 1) — 2In (m). Therefore, E [IA)AD} = 0.

2. Let Ly and Ly be identically distributed random variables with variance

0?7 < oo and correlation coefficient pr, r,, such that |pr, r,| < 1. Thus,

V[L, — Ly] = 202 (1 —pr,.1,)- Let now Ly = In [f)(q)\m)//\-

(2Ing)~"

and Ly = In [ZA)()\m)/A} (2Ing)~". By the Equations|.2.2

and

2.6

;V[Ll] =

V [Ly] = v (m — 1) + M (m). Therefore,

V [ban] = (@00 = 1) + 900 (1 = prz) /{2000 (42)

3. The proof of this part follows immediately from Lemma

44



Capitulo 3

Additional Results: Robustness to

outliers

The classical periodogram is a widespread tool in the context of the spectral
analysis of time series. However, as pointed out by [Fox (1972) it is very sensitive
to the presence of outliers and, therefore, it becomes a useless tool in situations
where the data is contaminated by atypical observations. Since additive outliers
are quite common in practice, to define a new periodogram robust to the presence
of these atypical observations is a valuable task that has a real practical interest.

Many approaches have been proposed in the time series literature in order to
access robust periodograms see for example, the references discussed in [Li| (2008)).
Most of these references, however, concern weakly dependent time series.

In the long-memory framework, [Molinares et al.| (2009) suggested a robust
plug-in periodogram, that is, a periodogram obtained by replacing, in the classical
periodogram, the standard sample autocovariance by the robust autocovariance

given in Ma and Genton| (2000). In order to deal with outliers, Molinares et al.
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(2009) introduced a robust estimator of the memory parameter d in the ARFIMA
model. A review of robust methods in the frequency domain and their use in
practical contexts can be found in Reisen and Molinares| (2012). To verify the
precision of the asymptotic theory on the robust estimation of the autocovariance
and also on the parameters of the models, simulation studies for finite sample sizes
were discussed in the previous references. In general, the empirical studies show
that the estimators, based on the robust autocovariance, are outlier resistant and
very useful in applied works. However, the robustness properties of the estimators
weakens when the data deviates from the Gaussian assumption, that is, when the

series has a heavy-tailed distribution.

This may be explained by the fact that the robust autocovariance function
involves a constant which depends strongly on the Gaussian distribution assump-
tion. In addition, the robust autocovariance estimator does not have the non-
negative definite property, and becomes useless in the context of non-stationary
process such as, for example, the ARFIMA process for 0.5 < d < 1.0. This para-
meter range is quite often encountered in time series with long-memory (Hurvich

and Ray| (1995), |Velasco| (1999), [Franco and Reisen| (2007) among others).

To overcome some of the restrictive properties of the robust plug-in perio-
dogram, a periodogram robust to the presence of outliers was proposed by [Li
G|
where Bn()\) is obtained by regressing series X, against harmonic components

ce(A) := [cos(\t), sin(At)]T:

(2010). Since the periodogram Ix(A) can be defined by Ix(A) = §

Ba(N\) = arg mingepe Z ‘Xt — eV 2 (3.0.1)

t=1
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the robust periodogram is simply the solution of the above equation replacing

the Ly norm by an L, norm:

~

Bn(N) = arg mingcge Z ‘Xt — ct(A)Tﬁ : (3.0.2)
t=1

where p € (0,2). If p = 2, then the ordinary periogram is obtained. Thus, the ob-
jective of this chapter is evaluate the performance of tests present in the previous
chapter when the processes are contaminated by additive outliers and also the
performance of the tests when the periodogram given in Equation [3.0.2] is consi-
dered when calculating the spectral density matrix. The empirical eveluation is
divided in tow sets. The first set compares the GPH, AD and the LDR estima-
tors performances when no outliers are included to the processes when additive
outliers are present using the ordinary periodogram under the null hypothesis of
non-cointegration. The second set analyzes the same estimators introducing the

L, norm for both: non-cointegrated and cointegrated series.

To the finite sample size investigation, 1500 processes with sample size n =
250 were generated for non cointegrated data, that is, C'I = (1, 1), and cointegra-
ted data, that is, CI = (1,0). The parameter p varies in the set {1.75,1.5,1.2}.
Innovations where generated as zero mean gaussian white noise processes with
identity variance matrix. Each observation may contain an additive outlier in
the error term of the cointegration equation (g;) with value equal 8 times the
standard deviation with probability equal 0.01, that is, a random variable  is
drawn for each point of the series such that, P(2 = 8) = P(2 = —8) = 0.01 and
P(Q2 =0) = 0.98.

Table presents the first set of simulations. For GPH two different speci-
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fications were considered. In the first one, GPH estimator was applied to OLS
residuals using Santander et al.| (2003)) critical values. In the second specifica-
tion, GPH was applied to differentiated OLS residuals and critical values are
from N (0, 1). The results show that all considered estimators suffer significantly
when the processes are contaminated by additive outliers. All tests produced
biased estimates and consequently, remarkable size distortions. The worst case
is the first difference GPH estimator. This test is completely distorted when the

process is contaminated. The remainders estimators show quite similar results.

Since the all methods analyzed have showed size distortions, it can be worthwhile
to replace the ordinary periodogram by the L, periodogram in Equation [3.0.2}
Now, table displays the results for the mean of estimates, empirical standard
deviations, mean squared error, size and power of the four considered tests. It
can be seen that the GPH for the non-differentiated data is still oversized for the
three values of parameter p. It was an expected result since the L, periodogram
cannot accommodate non-stationary data (for a wider discussion see |Li (2010))).
The remainders tests presented acceptable results when p = {1.5,1.2}. All the
three tests are still considerable oversized for p = 1.75. The best size performance
was played by the LDR estimator and, although the AD estimator has displayed
a better value than the LDR estimator when p = 1.2, the difference was small.

Evaluating the power, one can see that LDR estimator completely dominates
the AD estimator but does not dominate the AGPH which has displayed the best
results. However, the power performance of the three estimators (AGPH, AD
and LDR) was very poor. An unexpected effect of the use of L, periodogram was
that the value of estimated parameter b has been showed very biased under the

alternative hypothesis of non-cointegration. This suggests that L, norm is not a
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very reliable option to estimate and test b. Additional research should investi-
gate the reasons why this is occurring when the series are non-cointegrated even
after differentiating. In addition, future research must evaluate the performance

different robust peridograms (see [Molinares et al.| (2009) for examples).
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Tabela 3.1: Estimates, size and power under outliers presence vs outliers free

Statistics | .bGPHa . ) lfAGPH . ) .bADa . .bLDR .
No Outliers Outliers | No Outliers Outliers | No Outliers Outliers | No Outliers Outliers
Mean 0.9724 0.9119 -0.0202 -0.8454 0.0000 0.1456 0.0021 0.0862
sd 0.1035 0.1083 0.1020 0.1746 0.2790 0.2932 0.1389 0.1458
MSE | 00115 00195 | 00108 07452 | 0.0776  0.1071 | 0.0193  0.0287
Rejection 0.0473 0.1293 0.0813 0.9973 0.0487 0.1373 0.0483 0.1387
On 0.1000 0.1000 0.2795 0.1417
2 Since GPH was applied in the non-differentiated data, the expected value of b is 1.
> In order to compute o, to the AD estimator, values from Table 1 were used.
Tabela 3.2: Estimates, size and power using robust periodogram
CI = (1,1) CI = (1,0)
Estimator Statistics p=17 p=15 p=12|p=17 p=15 p=12
Mean  0.8233 0.8001  0.7154 | -0.0061 -0.0063 -0.0062
sd  0.1034 0.1053  0.1168 0.0988 0.0985  0.0980
GPH mse  0.0419 0.0511  0.0946 0.0220 0.0224  0.0219
Rejection  0.3447 0.4273  0.7360 1.0000 1.0000  1.0000
On 0.1000
Mean -0.0450 -0.0229 -0.0091 | -0.5931 -0.3778 -0.1993
sd  0.1038 0.1003  0.0981 0.1113 0.1015  0.1003
AGPH mse  0.0128 0.0106  0.0097 0.3641 0.1530  0.0498
Rejection  0.1220 0.0807  0.0667 0.9993 0.9853 0.6133
On 0.1000
Mean  0.0832 0.0243  0.0204 0.8021 0.5160  0.2267
sd  0.3130 0.3035  0.2934 0.3923 0.3430  0.3235
AD mse  0.1048 0.0926  0.0864 0.7972 0.3839  0.1560
Rejection  0.0960 0.0613  0.0567 0.7900 0.5320  0.2140
On 0.2972
Mean  0.0404 0.0180  0.0155 0.5406 0.2905  0.1360
sd  0.1446 0.1410  0.1420 0.1467 0.1413  0.1407
LDR mse  0.0225 0.0202  0.0204 0.2325 0.5233  0.7662
Rejection  0.0853 0.0640  0.0607 0.9833 0.6320  0.2347
o 0.1417
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Capitulo 4

Conclusoes

O presente trabalho investigou as propriedades do determinante da matriz de
densidade espectral proximo a origem para um vetor bi-variado. O determinante é
uma fungao poténcia do parametro que mensura a reducao da ordem de integracao
da série de erros, b. A partir disto, dois estimadores foram propostos para tal
parametro: o primeiro, baseado em Geweke and Porter-Hudak| (1983), propos
uma regressao do logaritmo do determinante da matriz espectral do processo
bivariado em estudo, o segundo um estimador semi-paramétrico do determinante

médio baseado na proposta de [Robinson, (1994).

O artigo também propoe testes sob a hipotese nula de nao cointegracao deri-
vados & partir dos estimadores apresentados. Estudos com amostras finitas foram
realizados com o objetivo de avaliar, empiricamente, o desempenho dos estimado-
res e dos testes propostos através do calculo do vicio, do erro quadratico médio,
dos niveis de significancia e do poder. Os resultados apontam que os testes tem
nivel de significAncia empirico proximo do nivel nominal. Além disso, o poder

dos testes revelou um desempenho similar quando comparado com outros testes
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classicos na literatura de cointegracao discutidos em Dittmann| (2000).

Os métodos aqui discutidos mostraram-se robustos a diferentes parametriza-
¢oes da declividade da relagao de cointegragao (). Foi investigada, ainda, as
propriedades empiricas de tais métodos sob a presenca de outliers. Neste sen-
tido, o periodograma robusto a presenca de outliers proposto em |Li (2010) foi
utilizado afim de obter-se testes resistentes a contaminagao nos processos. O
desempenho dos testes nao foi satisfatério quando o periodograma L, foi consi-
derado. O estimadores apresentaram-se viciados para a hipotese alternativa e,
consequentemente, o poder foi baixo. Pesquisas futuras devem investigar os mo-
tivos pelos quais isto ocorre. Neste sentido, o desempenho dos testes com outros
periodogramas robustos a presenca de outliers deve ser avaliado. Diversas alter-
nativas sao discutidas em Reisen and Molinares| (2012) e uma sequéncia natural
deste trabalho é avaliar o desempenho das mesmas.

Além da robustez a outliers, as pesquisas futuras investigardao o comporta-
mento dos testes utilizando periodogramas robustos a dados faltantes bem como
as propriedades assintoticas dos testes sob a hipotese de nao-cointegragao além
das propriedades dos testes sob o relaxamento de algumas hipoteses aqui assu-
midas como: erros ruidos brancos e séries integradas de ordem 1. Por fim, uma
versao multivariada destes testes deve ser considerada com o intuito de testar

miultiplos vetores de cointegracao.
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